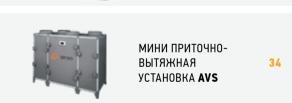

КАТАЛОГ ОБОРУДОВАНИЯ



01 ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ

ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ **АVM, AVMD**

18

02 СИСТЕМЫ ХОЛОДОСНАБЖЕНИЯ

O MATTER STATE OF THE STATE OF	КОМПРЕССОРНО- КОНДЕНСАТОРНЫЙ БЛОК VCU	36
	КОМПРЕССОРНО- КОНДЕНСАТОРНЫЙ БЛОК VRCM	38
	ЧИЛЛЕР С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА JSA	40
	ЧИЛЛЕР С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА ТВА	43
	ЧИЛЛЕР ДЛЯ РАБОТЫ С ВЫНОСНЫМ КОНДЕНСАТОРОМ JSE	46
	ЧИЛЛЕР ДЛЯ РАБОТЫ С ВЫНОСНЫМИ КОНДЕНСАТОРАМИ ТВЕ	49
	ЧИЛЛЕР С ВОДЯНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА JSH	51
	ЧИЛЛЕР С ВОДЯНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА ТВН	54

03 КАНАЛЬНОЕ ОБОРУДОВАНИЕ ПРЯМОУГОЛЬНОЕ

ВЕНТИЛЯТОР VL	56		ОХЛАДИТЕЛЬ ВОДЯНОЙ OW	82
ВЕНТИЛЯТОР VP	64		РЕКУПЕРАТОР ПЕРЕКРЕСТНОТОЧНЫЙ KR	83
ГИБКАЯ ВСТАВКА МV	73		ФИЛЬТР КАССЕТНЫЙ КРГ ВСТАВКА КАССЕТНАЯ ФИЛЬТРУЮЩАЯ SPK	84
ЗАСЛОНКА РЕГУЛИРУЮЩАЯ DPR	73		ФИЛЬТР КАРМАННЫЙ УКОРОЧЕННЫЙ КРU ВСТАВКА ФИЛЬТРУЮЩАЯ УКОРОЧЕННАЯ SPU	85
ЗАСЛОНКА РЕГУЛИРУЮЩАЯ УТЕПЛЁННАЯ DPU	74		ФИЛЬТР КАРМАННЫЙ КРR ВСТАВКА ФИЛЬТРУЮЩАЯ КАРМАННАЯ SPR	86
НАГРЕВАТЕЛЬ ВОДЯНОЙ NPW	75	The state of the s	БАКТЕРИЦИДНАЯ СЕКЦИЯ UFB	87
НАГРЕВАТЕЛЬ ЭЛЕКТРИЧЕСКИЙ NPE	78		ШУМОГЛУШИТЕЛЬ GHP	89
ОХЛАДИТЕЛЬ ФРЕОНОВЫЙ ОF	81			

04 КАНАЛЬНОЕ ОБОРУДОВАНИЕ КРУГЛОЕ

05 ВОЗДУШНО-ТЕПЛОВЫЕ ЗАВЕСЫ

06 ПРОТИВОПОЖАРНАЯ ВЕНТИЛЯЦИЯ

ПРОТИВОПОЖАРНЫЙ КЛАПАН КZO-2	110
ПРОТИВОПОЖАРНЫЙ КЛАПАН КZO-2K	115
КЛАПАН ДЫМОУДАЛЕНИЯ KZO-2D	118
ВЕНТИЛЯТОР РАДИАЛЬНЫЙ ДЫМОУДАЛЕНИЯ VPD DU Вставка круглая GVTC-Т Вставка квадратная GVTQ-Т Вставка прямоугольная GVTR-Т Клапан защитный PRT Кожух двигателя DTK Комплект виброопор DO	133 134 135 136
ВЕНТИЛЯТОР КРЫШНЫЙ ДЫМОУДАЛЕНИЯ С ВЫБРОСОМ В СТОРОНУ VSDB DU Стакан монтажный SMV, SMV-U Адаптер для клапанов SKV	163

151	ВЕНТИЛЯТОР КРЫШНЫЙ ДЫМОУДАЛЕНИЯ С ВЫБРОСОМ ВВЕРХ VSDV DU	142
	Стакан монтажный SMV, SMV-U Адаптер для клапанов SKV Поддон PV	163
	ОСЕВОЙ ВЕНТИЛЯТОР ПОДПОРА VLDA Козырек защитный ZKV Вставка круглая GHVK	
	ОСЕВОЙ ВЕНТИЛЯТОР ПОДПОРА КРЫШНЫЙ VLDK Стакан монтажный SMV, SMV-U Адаптер для клапанов SKV Поддон PV Комплект плиты опорной OPV	163 164

07 ПРОМЫШЛЕННЫЕ ВЕНТИЛЯТОРЫ

1	ВЕНТИЛЯТОР КРЫШНЫЙ С ВЫБРОСОМ В СТОРОНУ VSDB
	Стакан монтажный SMV, SMV-U 190
	Адаптер для клапанов SKV 191
	Поддон PV 192
	Клапан обратный KOV193

10	ВЕНТИЛЯТОР КРЫШНЫЙ С ВЫБРОСОМ ВВЕРХ VSDV	186
	Стакан монтажный SMV, SMV-U	190
	Адаптер для клапанов SKV	191
	Поддон PV	192
	Клапан обратный KOV	193

	КРЫШНЫЙ ВЕНТИЛЯТОР VS	194
	Обратный клапан КОD Стакан монтажный SMD	200 201

08 ABTOMATUKA

	БЛОКИ И ЩИТЫ УПРАВЛЕНИЯ	202
W Sales	РЕГУЛЯТОРЫ ОБОРОТОВ И УСТРОЙСТВА ЗАЩИТЫ	213
	ПРИВОДЫ ВОЗДУШНЫХ ЗАСЛОНОК	217
Signal	ДАТЧИКИ	218
	КЛАПАНЫ ТРЕХХОДОВЫЕ, СЕРВОПРИВОДЫ	222
1	НАСОСЫ ЦИРКУЛЯЦИОННЫЕ	224
	СМЕСИТЕЛЬНЫЕ УЗЛЫ	225
	УСТРОЙСТВА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ	227

РОССИЙСКИЙ ПРОИЗВОДИТЕЛЬ

BEPTPO (VERTRO) – российский производитель оборудования для систем вентиляции и кондиционирования воздуха.

Обеспечиваем воздухом и работой с 2009 года

Осчастливили более 15 000 венткамер

Представительства в 15 городах России, Беларуси и Казахстана.

Центральный офис – в Москве, производство – в Московской области

В официальном каталоге Импортозамещения РФ

Надежные комплектующие

Оперативная сервисная поддержка

Широкий ассортимент: от датчиков до чиллеров

Ходовая продукция всегда на складе

Расширенная гарантия до 5 лет

ПРОГРАММА ПОДБОРА

Подбирает все основные типы климатического оборудования, от канального до чиллеров

Оперативный подбор: приточная система всего **за 30 секунд**

Современный и понятный интерфейс, в котором приятно работать

Более 1000 пользователей

Видео подбора Центрального кондиционера

Регистрация в программе подбора

С НАМИ УДОБНО

Быстро подбираем оборудование, оперативно вносим коррективы и всегда на связи

Ваш заказ полностью ведет один менеджер, начиная с подготовки КП и заканчивая контролем отгрузки. **Это удобно:** один контакт по любым вопросам

Понимаем крайне непростую экономическую и политическую ситуацию в стране, поэтому с нами всегда **можно договориться**

производство

Prima Power

ЮВЕЛИРНАЯ ТОЧНОСТЬ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ (0,1 ММ) БЛАГОДАРЯ ЕВРОПЕЙСКИМ СТАНКАМ PRIMA POWER

Видео с производства

производство

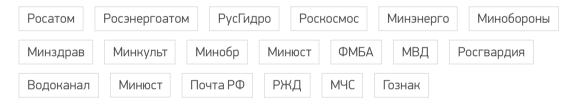


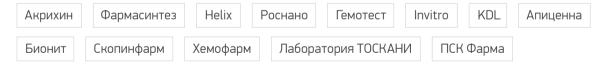


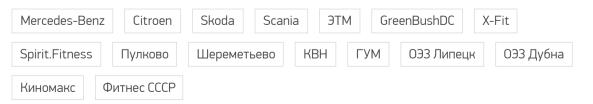
ПОЛНОСТЬЮ ОБНОВЛЕННЫЙ В 2021 ГОДУ ПРОИЗВОДСТВЕННЫЙ ПАРК

Видео с производства

РЕАЛИЗОВАННЫЕ ОБЪЕКТЫ




Пищевая промышленность


Госкомпании

Фармацевтика, медицина

🔑 Разное

ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ AVM, AVMD

- 19 типоразмеров производительностью от 900 до 21000 м³/ч;
- Центральные кондиционеры AVM производятся только в одноэтажном исполнении, AVMD — в одноэтажном и двухэтажном исполнениях;
- Каркас из алюминиевого профиля и сэндвич-панелей толщиной 25 мм;
- Высота опор основания 100 мм;

- Облегченная конструкция, максимально оптимизированная по габаритам (общая высота кондиционера не превышает 2 м);
- Резиновый уплотнитель, встроенный в алюминиевый профиль, обеспечивает высокую герметичность конструкции со стороны съемных панелей и в месте соединения отдельных секций друг с другом;
- Доступны крышное, подвесное, МЕД и гигиеническое исполнения.

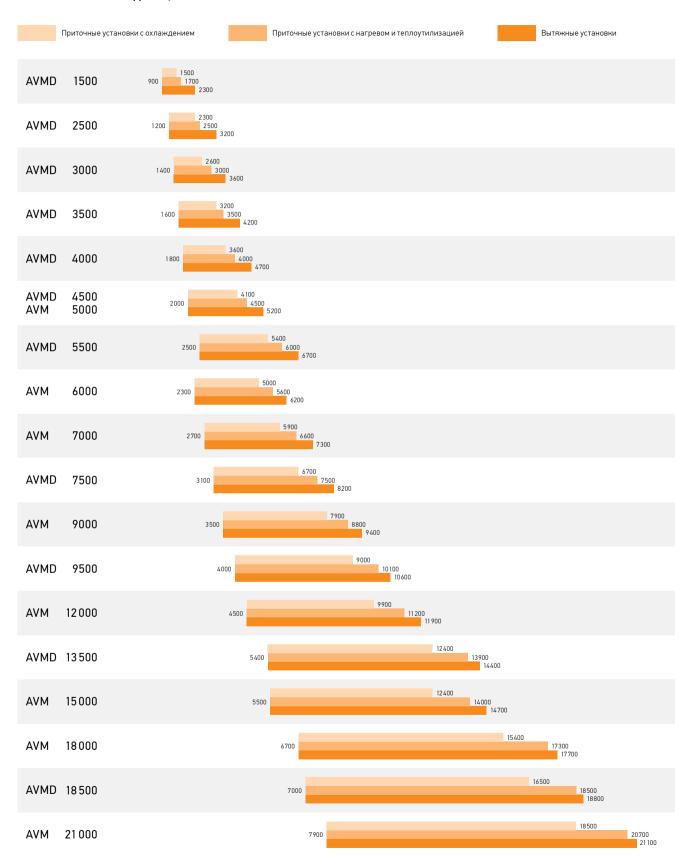
ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

ККБ VCU, VRCM

Чиллер с воздушным охлаждением JSA

Чиллер с выносным конденсатором JSE

Чиллер с водяным охлаждением JSH

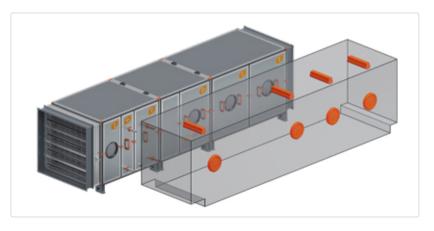


Блоки управления UM VR-E / W

Блоки управления UM CA-E / W

ГРАФИК БЫСТРОГО ПОДБОРА, м³/ч

КРЫШНОЕ ИСПОЛНЕНИЕ AVM, AVMD


- Исполнение для установки снаружи помещения;
- Монтируется крыша, защищающая от попадания осадков, и козырек на входном (выходном) отверстии для воздуха.

ПОДВЕСНОЕ ИСПОЛНЕНИЕ AVM, AVMD

- Подвесное исполнение возможно для типоразмеров до AVM 7000 и до AVMD 7500;
- Реализуется при помощи нескольких профилей (типа монтажной траверсы), с настраиваемой длиной.

МЕД ИСПОЛНЕНИЕ AVM, AVMD

- Для вентиляции и кондиционирования медицинских зданий и помещений;
- Встроенные светильники и смотровые окна в секциях вентиляторов и фильтров для визуального контроля работы и загрязнения;
- Материалы, контактирующие с обрабатываемым воздухом, устойчивы к обработке дезрастворами и гипоаллергенны;
- Специсполнения: оцинкованное, нержавеющее.

01 ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ

ВЕНТИЛЯТОР

- Предназначен для создания воздушного потока и перемещения воздуха по системам вентиляции;
- Низкое энергопотребление за счет рабочего колеса с назад загнутыми лопатками, установленного на валу электродвигателя;
- Высокая эксплуатационная надежность благодаря встроенной защите электродвигателя от перегрева;
- Вентблок установлен в секции на резиновых виброизоляторах.

ВЕНТИЛЯТОР С РЕЗЕРВНЫМ ДВИГАТЕЛЕМ

- Предназначен для создания воздушного потока и перемещения воздуха по системам вентиляции;
- Рабочее колесо установлено на валу резервного электродвигателя;
- Соединение электродвигателей через клиноременную передачу позволяет оперативно восстановить работоспособность системы в случае выхода из строя основного электродвигателя;
- Вентблок установлен в секции на резиновых виброизоляторах.

ВОДЯНОЙ НАГРЕВАТЕЛЬ

- Предназначен для нагрева воздушного потока;
- Эффективный медно-алюминиевый теплообменник;
- Патрубки для слива теплоносителя и выпуска воздуха из контура теплообменника;
- Резьбовое соединение с системой теплоснабжения.

ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬ

- Предназначен для нагрева воздушного потока;
- Нагревательные элементы трубчатого типа с оребрением, выполненным из стальной гофрированной ленты;
- Мощность 15, 22,5, 30, 45, 60, 75, 90, 120 кВт;
- Оснащен двумя термостатами защиты от перегрева: по температуре воздуха и по температуре корпуса.

ВОДЯНОЙ ОХЛАДИТЕЛЬ

- Предназначен для охлаждения воздушного потока;
- Эффективный медно-алюминиевый теплообменник;
- Пластиковый каплеуловитель препятствует попаданию конденсата, образовавшегося в процессе теплообмена, в систему воздуховодов;
- Поддон со сливным патрубком обеспечивает сбор и отвод конденсата;
- Тип хладоносителя вода или незамерзающие смеси на основе пропилен- или этиленгликоля концентрацией до 50%.

ФРЕОНОВЫЙ ОХЛАДИТЕЛЬ

- Предназначен для охлаждения воздушного потока;
- Эффективный медно-алюминиевый теплообменник;
- Пластиковый каплеуловитель препятствует попаданию конденсата, образовавшегося в процессе теплообмена, в систему воздуховодов;
- Поддон со сливным патрубком обеспечивает сбор и отвод конденсата;
- Тип хладагента R407C, R410A.

ФИЛЬТР

- Предназначен для очистки воздушного потока от пыли и других твёрдых частиц;
- Низкое аэродинамическое сопротивление;
- Высокая пылеёмкость (долгий срок службы);
- **•** Степень очистки: G3, F5, F7, F9, H11, H12, H13, H14.

ШУМОГЛУШИТЕЛЬ

- Предназначен для снижения аэродинамического шума, создаваемого вентилятором в центральных кондиционерах;
- Эффективное шумопоглощение в широком диапазоне частот;
- Шумопоглощающий материал кашированная минеральная вата.

РЕГУЛИРУЮЩАЯ ЗАСЛОНКА

- Предназначена для перекрытия вентиляционного канала и регулирования потока воздуха;
- Корпус и поворотные лопатки из алюминиевого профиля;
- Шестерёнчатый привод из термостойкого пластика;
- Резиновые уплотнители на каждой поворотной лопатке для увеличения герметичности и снижения риска примерзания;
- Шток квадратного сечения для исключения проскальзывания.

УТЕПЛЕННАЯ ЗАСЛОНКА

- Предназначена для перекрытия вентиляционного канала;
- Корпус из оцинкованной стали, лопатки из алюминиевого профиля с замковым примыканием;
- Рычажно-тяговый механизм передачи движения от привода к лопаткам;
- ТЭНы для подогрева мест соприкосновения лопаток;
- Клеммная коробка на корпусе для подключения.

01 ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ

РОТОРНЫЙ РЕГЕНЕРАТОР

- Предназначен для снижения энергетических затрат за счёт утилизации тепла вытяжного воздуха;
- КПД утилизации до 80%;
- Щёточные уплотнители из войлока минимизируют переток между приточным и вытяжным воздухом;
- Минимальный риск обмерзания.

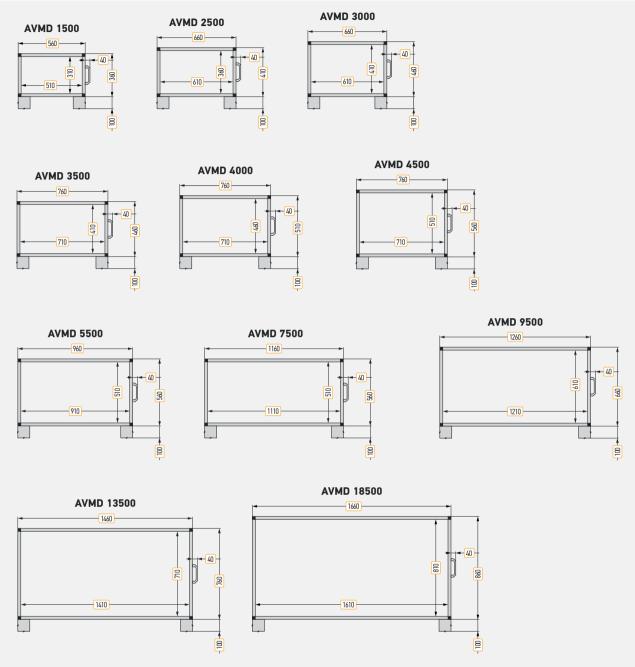
ПЛАСТИНЧАТЫЙ РЕКУПЕРАТОР

- Предназначен для снижения энергетических затрат за счёт утилизации тепла вытяжного воздуха;
- КПД утилизации до 60%;
- Обводной канал на приточной части используется для защиты рекуператора от обмерзания в холодный период года и позволяет избежать нежелательной рекуперации в теплый период года.

ГЛИКОЛЕВЫЙ РЕКУПЕРАТОР

- Предназначен для снижения энергозатрат за счёт утилизации тепла вытяжного воздуха;
- Отсутствие перетечек между потоками приточного и вытяжного воздуха;
- КПД утилизации до 50%;
- Эффективный 8-рядный медно-алюминиевый теплообменник;
- Вытяжная часть оснащена каплеуловителем с поддоном для сбора и отвода конденсата.
- Приточная установка может быть отнесена от вытяжной на значительное расстояние.

ТИПОРАЗМЕРЫ AVM



- Все размеры приведены в миллиметрах (мм).
- Внешние размеры указаны без учета патрубков теплообменников нагревателей и охладителей, максимальный вылет патрубков 150 мм.
- Максимальная длина одиночной секции или моноблока 1500 мм.

ПЛОЩАДЬ ЖИВОГО СЕЧЕНИЯ AVM

AVM 5000	AVM 6000	AVM 7000	AVM 9000	AVM 12000	AVM 15000	AVM 18000	AVM 21000
0,37 m²	0,38 m²	0,51 м²	0,66 m²	0,83 м²	1,02 м ²	1,24 m²	1,47 m²

ТИПОРАЗМЕРЫ AVMD

- Все размеры приведены в миллиметрах (мм).
- Внешние размеры указаны без учета патрубков теплообменников нагревателей и охладителей, максимальный вылет патрубков 150 мм.
- Максимальная длина одиночной секции или моноблока 1500 мм.
- В двухэтажном исполнении AVMD верхняя сэндвич-панель секции 1-го этажа является полом секции 2-го этажа.

ПЛОЩАДЬ ЖИВОГО СЕЧЕНИЯ AVMD

AVMD 1500	AVMD 2500	AVMD 3000	AVMD 3500	AVMD 4000	AVMD 4500	AVMD 5500	AVMD 7500	AVMD 9500	AVMD 13500	AVMD 18500
0,16 m²	0,22 m²	0,25 м²	0,3 m²	0,33 м²	0,37 м²	0,47 m²	0,57 м²	0,74 m²	1,01 m²	1,31 м²

ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ AVL, AVLD

- 21 типоразмер производительностью от 2800 до 89000 м³/ч;
- Производятся в одноэтажном и двухэтажном исполнениях;
- Усиленная конструкция на базе алюминиевого профиля;
- Прочная опорная рама из оцинкованной стали, высота 100 мм;
- Увеличенная тепло- и шумоизоляция благодаря сэндвич-панелям толщиной 45 мм;
- Широкий ряд функциональных элементов и вариантов конфигурации;
- Доступны крышное, МЕД и гигиеническое исполнения.

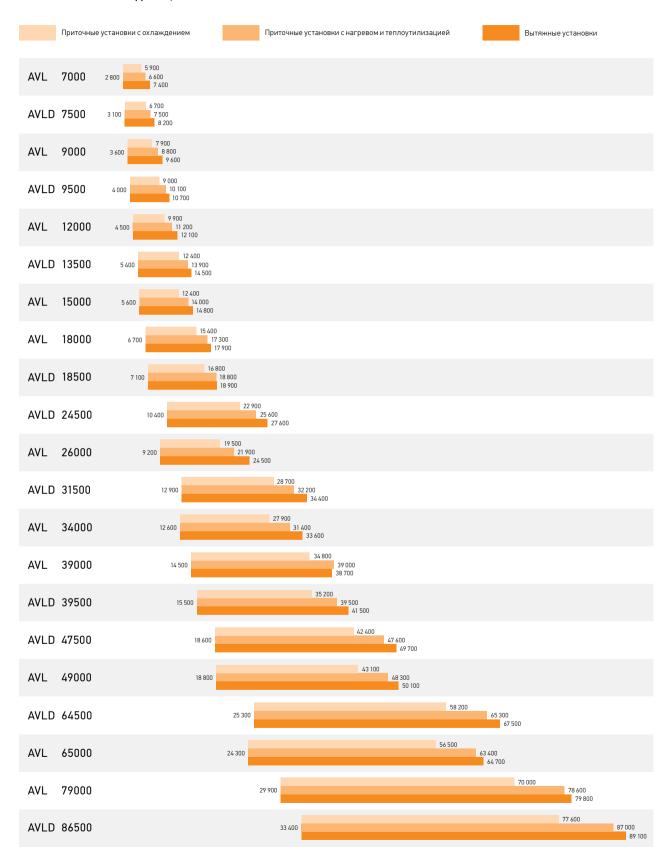
ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

ККБ VCU, VRCM

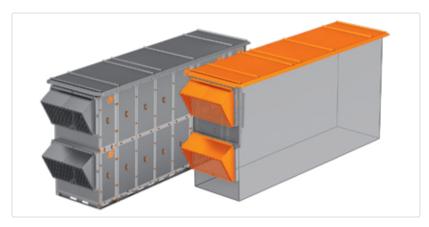
Чиллер с воздушным охлаждением ТВА

Чиллер с выносным конденсатором ТВЕ

Чиллер с водяным охлаждением ТВН

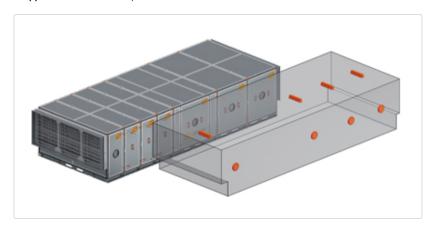


Блоки управления UM VR-E / W



Блоки управления UM CA-E / W

ГРАФИК БЫСТРОГО ПОДБОРА, м3/ч



КРЫШНОЕ ИСПОЛНЕНИЕ AVL, AVLD

- Исполнение для установки снаружи помещения;
- Монтируется крыша, защищающая от попадания осадков, и козырек на входном (выходном) отверстии для воздуха.

МЕД ИСПОЛНЕНИЕ AVL, AVLD

- Для вентиляции и кондиционирования медицинских зданий и помещений;
- Встроенные светильники и смотровые окна в секциях вентиляторов и фильтров для визуального контроля работы и загрязнения;
- Материалы, контактирующие с обрабатываемым воздухом, устойчивы к обработке дезрастворами и гипоаллергенны;
- Специсполнения: оцинкованное, нержавеющее.

01 ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ

ВЕНТИЛЯТОР

- Предназначен для создания воздушного потока и перемещения воздуха по системам вентиляции;
- Низкое энергопотребление за счет рабочего колеса с назад загнутыми лопатками, установленного на валу электродвигателя;
- Высокая эксплуатационная надежность благодаря встроенной защите электродвигателя от перегрева;
- Вентблок установлен в секции на резиновых виброизоляторах.

ВЕНТИЛЯТОР С РЕЗЕРВНЫМ ДВИГАТЕЛЕМ

- Предназначен для создания воздушного потока и перемещения воздуха по системам вентиляции;
- Рабочее колесо установлено на валу резервного электродвигателя;
- Соединение электродвигателей через клиноременную передачу позволяет оперативно восстановить работоспособность системы в случае выхода из строя основного электродвигателя;
- Вентблок установлен в секции на резиновых виброизоляторах.

ВОДЯНОЙ НАГРЕВАТЕЛЬ

- Предназначен для нагрева воздушного потока;
- Эффективный медно-алюминиевый теплообменник;
- Патрубки для слива теплоносителя и выпуска воздуха из контура теплообменника;
- Резьбовое соединение с системой теплоснабжения.

ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬ

- Предназначен для нагрева воздушного потока;
- Нагревательные элементы трубчатого типа с оребрением, выполненным из стальной гофрированной ленты;
- Мощность 15, 22,5, 30, 45, 60, 75, 90, 120, 150, 180, 240 кВт;
- Оснащен двумя термостатами защиты от перегрева: по температуре воздуха и по температуре корпуса.

ВОДЯНОЙ ОХЛАДИТЕЛЬ

- Предназначен для охлаждения воздушного потока;
- Эффективный медно-алюминиевый теплообменник;
- Пластиковый каплеуловитель препятствует попаданию конденсата, образовавшегося в процессе теплообмена, в систему воздуховодов;
- Поддон со сливным патрубком обеспечивает сбор и отвод конденсата;
- Тип хладоносителя вода или незамерзающие смеси на основе пропилен- или этиленгликоля концентрацией до 50%.

ФРЕОНОВЫЙ ОХЛАДИТЕЛЬ

- Предназначен для охлаждения воздушного потока;
- Эффективный медно-алюминиевый теплообменник;
- Пластиковый каплеуловитель препятствует попаданию конденсата, образовавшегося в процессе теплообмена, в систему воздуховодов;
- Поддон со сливным патрубком обеспечивает сбор и отвод конденсата;
- Тип хладагента R407C, R410A.

ФИЛЬТР

- Предназначен для очистки воздушного потока от пыли и других твёрдых частиц;
- Низкое аэродинамическое сопротивление;
- Высокая пылеёмкость (долгий срок службы);
- Степень очистки: G3, F5, F7, F9, H11, H12, H13, H14.

ШУМОГЛУШИТЕЛЬ

- Предназначен для снижения аэродинамического шума, создаваемого вентилятором в центральных кондиционерах;
- Эффективное шумопоглощение в широком диапазоне частот;
- Шумопоглощающий материал кашированная минеральная вата.

РОТОРНЫЙ РЕГЕНЕРАТОР

- Предназначен для снижения энергетических затрат за счёт утилизации тепла вытяжного воздуха;
- КПД утилизации до 80%;
- Щёточные уплотнители из войлока минимизируют переток между приточным и вытяжным воздухом;
- Минимальный риск обмерзания.

ПЛАСТИНЧАТЫЙ РЕКУПЕРАТОР

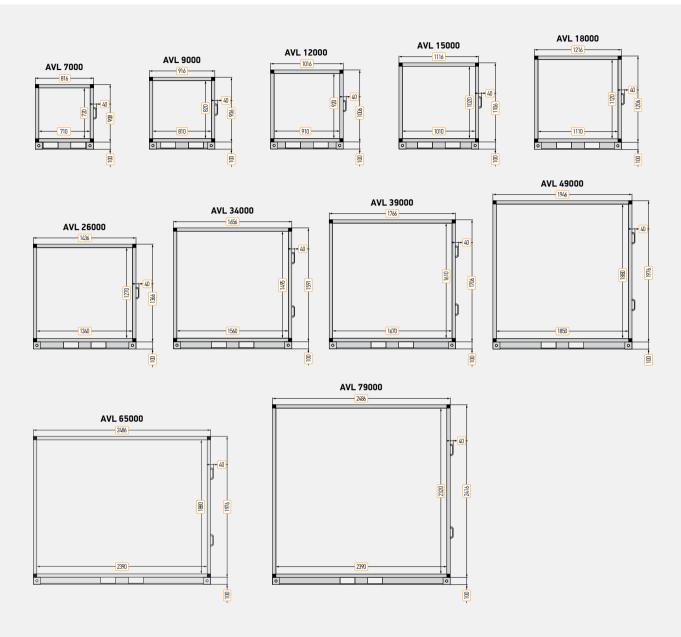
- Предназначен для снижения энергетических затрат за счёт утилизации тепла вытяжного воздуха;
- КПД утилизации до 60%;
- Обводной канал на приточной части используется для защиты рекуператора от обмерзания в холодный период года и позволяет избежать нежелательной рекуперации в теплый период года.

01 ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ

ГЛИКОЛЕВЫЙ РЕКУПЕРАТОР

- Предназначен для снижения энергозатрат за счёт утилизации тепла вытяжного воздуха;
- Отсутствие перетечек между потоками приточного и вытяжного воздуха;
- КПД утилизации до 50%;
- Эффективный 8-рядный медно-алюминиевый теплообменник;
- Вытяжная часть оснащена каплеуловителем с поддоном для сбора и отвода конденсата;
- Приточная установка может быть отнесена от вытяжной на значительное расстояние.

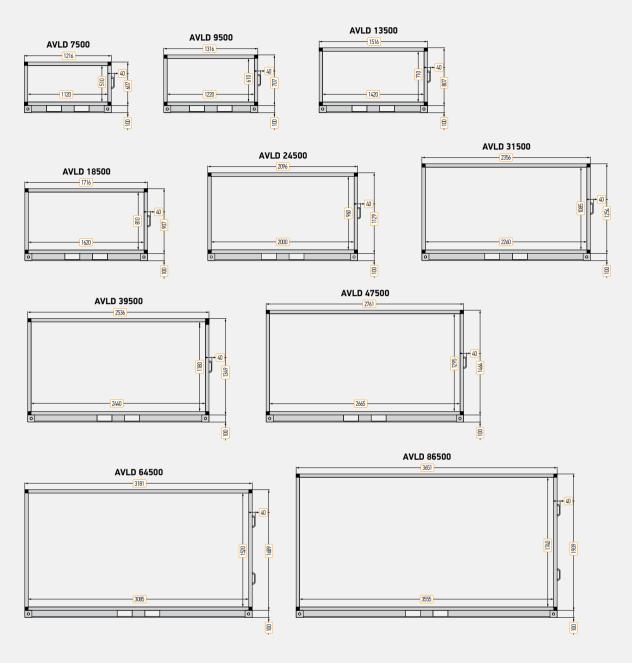
РЕГУЛИРУЮЩАЯ ЗАСЛОНКА


- Предназначена для перекрытия вентиляционного канала и регулирования потока воздуха;
- Корпус и поворотные лопатки из алюминиевого профиля;
- Шестерёнчатый привод из термостойкого пластика;
- Резиновые уплотнители на каждой поворотной лопатке для увеличения герметичности и снижения риска примерзания;
- Шток квадратного сечения для исключения проскальзывания.

УТЕПЛЕННАЯ ЗАСЛОНКА

- Предназначена для перекрытия вентиляционного канала;
- Корпус из оцинкованной стали, лопатки из алюминиевого профиля с замковым примыканием;
- Рычажно-тяговый механизм передачи движения от привода к лопаткам;
- ТЭНы для подогрева мест соприкосновения лопаток;
- Клеммная коробка на корпусе для подключения.

ТИПОРАЗМЕРЫ AVL



- Все размеры приведены в миллиметрах (мм).
- Внешние размеры указаны без учета патрубков теплообменников нагревателей и охладителей, максимальный вылет патрубков 150 мм.
- Максимальная длина одиночной секции или моноблока 1600 мм.
- При двухэтажном исполнении секции 2-го этажа поставляются без опорной рамы и устанавливаются на секции 1-го этажа.

ПЛОЩАДЬ ЖИВОГО СЕЧЕНИЯ AVL

AVL 7000	AVL 9000	AVL 12000	AVL 15000	AVL 18000	AVL 26000	AVL 34000	AVL 39000	AVL 49000	AVL 65000	AVL 79000
0,52 м²	0,67 m²	0,84 m ²	1,03 m²	1,25 м²	1,71 m²	2,34 m²	2,69 м²	3,48 м²	4,5 м²	5,55 м²

ТИПОРАЗМЕРЫ AVLD

- Все размеры приведены в миллиметрах (мм).
- Внешние размеры указаны без учета патрубков теплообменников нагревателей и охладителей, максимальный вылет патрубков 150 мм.
- Максимальная длина одиночной секции или моноблока 1600 мм.
- При двухэтажном исполнении секции 2-го этажа поставляются без опорной рамы и устанавливаются на секции 1-го этажа.

ПЛОЩАДЬ ЖИВОГО СЕЧЕНИЯ AVLD

AVLD 7500	AVLD 9500	AVLD 13500	AVLD 18500	AVLD 24500	AVLD 31500	AVLD 39500	AVLD 47500	AVLD 64500	AVLD 86500
0,58 м²	0,75 м²	1,01 m²	1,32 m²	1,92 m²	2,46 m²	2,88 м2	3,46 m²	4,69 m²	6,19 м²

МИНИ ПРИТОЧНО-ВЫТЯЖНЫЕ УСТАНОВКИ AVS

- Напольные вентиляционные агрегаты, обеспечивающие фильтрацию, нагрев, подачу свежего воздуха и удаление загрязненного;
- 7 типоразмеров производительностью от 400 до 3800 м³/ч;
- Типоразмеры 400-1600 имеют круглое соединение с воздуховодами, типоразмеры 2200-3800 – прямоугольное;
- Теплоутилизаторы: роторный регенератор и пластинчатый рекуператор;
- Внутренняя установка;
- Исполнения: выброс вверх и выброс в стороны.

Предназначены для вентиляции небольших помещений (коттеджи, квартиры, офисы, магазины и т.п.), где важны минимальные габаритные размеры и шумовые характеристики.

ПРЕИМУЩЕСТВА

- Низкое потребление электроэнергии за счет применения высокоэффективных рабочих колес вентиляторов с назад загнутыми лопатками, установленными непосредственно на валу электродвигателя.
- Компактные габариты и небольшой вес.
- Эффективная теплоутилизация: регенерация до 85%, перекрестная рекуперация до 70%.
- Простой и удобный монтаж.
- Удобство в обслуживании.

КОРПУС

Тепло- и звукоизоляционные трёхслойные сэндвич-панели толщиной 35 мм. Съёмные сервисные панели. Алюминиевый прочный профиль каркаса секций, соединённый пластиковыми угловыми элементами, обеспечивающий жёсткую конструкцию установок.

ТЕПЛОУТИЛИЗАТОРЫ

Тепловая энергия воздуха передается приточному воздуху через пластинчатый рекуператор или роторный регенератор. Поверхность теплообмена пластинчатого рекуператора образована пакетом алюминиевых пластин, между которыми происходит перекрёстное движение приточного и вытяжного воздуха. КПД рекуперации достигает 70%. Поверхность теплообмена роторного регенератора представляет собой вращающийся барабан из волнообразных алюминиевых лент, обеспечивающих высокоэффективную теплопередачу. КПД рекуперации достигает 85%.

ВЕНТИЛЯТОРЫ

Используется рабочее колесо с назад загнутыми лопатками, выполненные из оцинкованного стального листа. В качестве привода вентиляторов используются компактные асинхронные однофазные двигатели с внешним ротором (типоразмеры 400-1100) и трёхфазные асинхронные электродвигатели (типоразмеры 1600-3800).

НАГРЕВАТЕЛИ

Электрический. Нагревательные элементы трубчатого типа изготовлены из нержавеющей стали и укреплены алюминиевыми распорками для предотвращения вибраций. Скорость потока воздуха через нагреватель должна быть не менее 1 м/с. Защита от перегрева двумя встроенными термостатами, гарантирующая безопасную и надежную работу электрических нагревателей.

Водяной. Поверхность теплообмена изготовлена из алюминиевых пластин и проходящих через них в шахматном порядке медных трубок. Типоразмеры 400-1600 — однорядные теплообменники, типоразмеры 2200-3800 — двухрядные.

ФИЛЬТРЫ

В приточных частях установки в качестве грубой очистки используется предфильтр G2, в качестве тонкой — кассетный фильтр F7. В вытяжной части — кассетный фильтр G3. Опционально имеется возможность установки кассетного угольного фильтра.

АВТОМАТИКА

Установки оснащены встроенной системой автоматики, обеспечивающей надёжную защиту, точную работу и гибкое управление.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

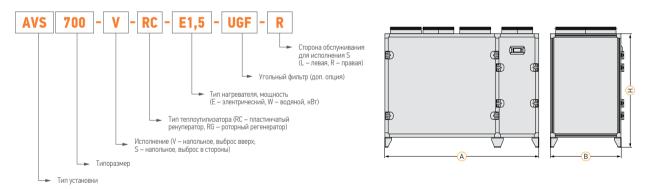
Заслонка регулирующая DPR

Шумоглушитель

Шумоглушитель GHK

Заслонка регулирующая DKR

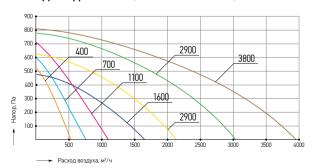
Привод для воздушных заслонок



Выносная панель управления для AVS


ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Типоразмер	Нагреватели электрические (с рекуператором / с регенератором)			(с рекуп	гели водяные ератором / с	Присоеди-	Габариты и вес (с рекуператором / с регенератором)							
				регенератором)		нительные размеры,	Выброс вверх				Выброс в стороны			
	Мощность, кВт	Ток, А (Напряжение, В)	Количество ступеней	Мощность, кВт	Подсоедине- ние, дюйм	размеры, ММ	А, мм	В, мм	Н, мм	Bec, кг	А, мм	В, мм	Н, мм	Bec, кг
400	1 / 0,5	4,5 (1~220) / 2,3 (1~220)	1/1	2,88	1/2"	Ø200	1075	526	976	115/ 120	1150/ 1020	526	606/ 671	90/ 100
	1,5 / 1	6,8 (1~220) / 4,5 (1~220)	1/1											
	2,5 / 1,5	11,4 (1~220) / 6,8 (1~220)	1/1											
	1,5 / 1	6,8 (1~220) / 4,5 (1~220)	1/1	4,59	1/2"	Ø200	1075	600	1103	135/ 140	1300/ 1100	601	711/ 692	105/ 115
700	3 / 2	13,6 (1~220) / 9,1 (1~220)	1/1											
	6/3	9,1 / 3~380 / 13,6 (1~220)	1/1											
1100	2 / 1,5	9,1 / (1~220) / 6,8 (1~220)	1/1	7,18	1/2"	Ø250	1250	676	1117	155/ 165	1536/ 1195	676	760/ 765	135/ 140
	4,5 / 3	6,8 (3~380) / 13,6 (1~220)	1/1											
	7,5 / 4	11,4 (3~380) / 18,2 (1~220)	2/1											
	4,5 / 3	6,8 (3~380) / 4,5 (3~380)	1/1	10,56	1/2"	Ø315	1728/ 1580	726	1400/ 1167	190/ 210	1998/ 1650	726	981/ 898	190/ 200
1600	7,5 / 6	11,4 (3~380) / 9,1 (3~380)	2/1											
	10,5 / 9	15,9 (3~380) / 13,6 (3~380)	2/2											
	4,5 / 3	6,8 (3~380) / 4,5 (3~380)	1/1	20	1/2"	500×250	1870/ 1500	816	1542/ 1257	280/ 250	2070/ 1650	816	1121/ 898	240/ 250
2200	9 / 7,5	13,6 (3~380) / 11,4 (3~380)	2/2											
	13,5 / 10,5	20,5 (3~380) / 15,9 (3~380)	2/2											
	6 / 4,5	9,1 (3~380) / 6,8 (3~380)	1/1	27	1/2"	500×300	1960/ 1800	916	1542/ 1357	300/ 310	2500/ 1800	916	1121/ 952	
2900	12 / 9	18,2 (3~380) / 13,6 (3~380)	2/2											310/ 290
	18 / 13,5	27,3 (3~380) / 20,5 (3~380)	3 / 2											270
3800	9/6	13,6 (3~380) / 9,1 (3~380)	2/1	34	1/2"	600×300	2006/ 1754	1016	1542/ 1457	320/ 330	2580/ 1860	1016	1121/ 1052	320/ 310
	18 / 12	27,3 (3~380) / 18,2 (3~380)	3 / 2											
	25,5 / 18	38,6 (3~380) / 27,3 (3~380)	3/3											010


^{*} Высота ножек 100 мм

СВОБОДНОЕ ДАВЛЕНИЕ (ВЫТЯЖНАЯ ЧАСТЬ)

СВОБОДНОЕ ДАВЛЕНИЕ (ПРИТОЧНАЯ ЧАСТЬ)

КОМПРЕССОРНО-КОНДЕНСАТОРНЫЙ БЛОК VCU

Компрессорно-конденсаторные блоки VCU предназначены для подготовки жидкого хладагента, подаваемого в секцию прямого испарения системы кондиционирования воздуха.

- Хладагент: фреон R410A;
- Тип исполнения: только охлаждение;
- Холодопроизводительность: от 3,5 до 45 кВт;
- Коэффициент энергоэффективности: EER 2,8;
- Максимальная длина трассы: от 15 до 50 м (в зависимости от типоразмера);
- Диапазон рабочих температур окружающего воздуха: +10°C до +50°C.

КОНСТРУКЦИЯ КОРПУСА

Несущий корпус из оцинкованной стали с порошковым полиэфирным покрытием. Резиновые виброизоляторы входят в комплект поставки. Лёгкий доступ к внутренним компонентам с помощью съемных панелей.

КОМПРЕССОРЫ

Герметичный ротационный компрессор с однофазным (типоразмеры 003—010) или трехфазным двигателем (типоразмеры 016—022) и спиральный компрессор с трёхфазным двигателем (типоразмеры 028—045), установленный на виброизоляторах. Встроенная защита обмоток двигателя от перегрузки.

ВЕНТИЛЯТОРЫ

Осевые низкооборотные вентиляторы с лопатками особой формы (низкий уровень шума). Встроенная защита электродвигателя вентилятора от перегрева. Степень защиты: IP 54. Защитная решётка на нагнетании.

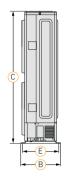
КОНДЕНСАТОР

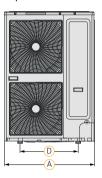
Представляет собой алюминиевый микроканальный (типоразмеры 003-022) и медный трубчатый (типоразмеры 028-045) теплообменник с оребрением из алюминиевых пластин.

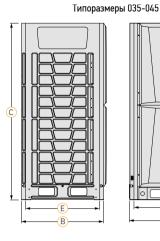
БЛОК УПРАВЛЕНИЯ

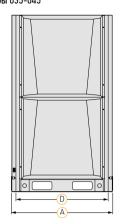
В состав блока управления входят следующие компоненты: вводной выключатель; реле контроля фаз и индикаторы работа/авария; цепь защиты с ручным возвратом в рабочее состояние по аварии температуры обмоток вентилятора, высокому и низкому давлениям, токовой защите двигателей компрессоров; контакты для дистанционного управления работой и индикации работа/авария.

холодильный контур


Один контур. Компоненты: реле высокого давления с автоматическим возвратом в рабочее состояние; реле низкого давления; датчик давления конденсации; сервисные клапаны Шредера; запорные вентили на выходе из компрессорно-конденсаторного блока.


ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ


Параметр	Типоразмер VCU										
параметр	003	005	007	010	016	022	028	035	045		
Холодопроизводительность	кВт	3,5	5,3	7,1	10,5	16	22	28	35	45	
Электрическая мощность	кВт	1,29	1,9	2,4	3,6	6,6	7,3	10,3	12,5	16,5	
Производительность вентилятора	м³/ч	1600	2400	3300	4000	6000	9000	12000	12000	15000	
Питание	В/Гц		220-2	40 / 50		380-415 / 50, 3 фазы					
Марка компрессора		GREE	HIGHLY	GREE	GREE	GREE	HIGHLY	Panasonic	Panasonic	Panasonic	
Фреон		R410A									
Диаметр жидкостной линии	мм	09,53	Ø9,53	Ø9,53	Ø9,53	Ø9,53	Ø9,53	012,7	Ø12,7	022,0	
Диаметр паровой линии	мм	Ø12,7	Ø12,7	Ø15,88	Ø19,1	Ø19,1	Ø19,1	Ø22,0	Ø28,6	Ø28,6	
Уровень звукового давления	дБ	55	55	56	56	60	58	64	64	65	



ГАБАРИТЫ И МАССА

Типоразмеры 003-010

06			Размеры, мм			M
Обозначение	А	В	С	D	E	Масса, кг
VCU 003	850	345	555	508	314	31
VCU 005	850	345	555	508	314	36
VCU 007	914	382	702	544	354	48
VCU 010	1015	445	810	670	400	63
VCU 016	911	400	1330	585	360	87,5
VCU 022	1015	450	1430	636	417	125,5
VCU 028	990	840	1740	720	774	210
VCU 035	990	840	1740	720	774	240
VCU 045	1340	840	1740	1070	774	268

В СОСТАВ КОМПЛЕКТА ККБ ВХОДИТ:

- Типоразмеры 003-022:
 - терморегулирующий вентиль и обратный клапан в корпусе.
- Типоразмеры 028-045:
 - фильтр-осушитель;
 - терморегулирующий вентиль.

КОМПРЕССОРНО-КОНДЕНСАТОРНЫЙ БЛОК VRCM

Компрессорно-конденсаторные блоки VRCM предназначены для подготовки жидкого хладагента, подаваемого в секцию прямого испарения системы кондиционирования воздуха.

- Хладагент: фреон R410A;
- Тип исполнения: только охлаждение;
- Номинальная холодопроизводительность: от 50 до 85 кВт;
- Инверторное исполнение: диапазон мощности от 60 до 125%;
- Коэффициент энергоэффективности: EER 2,8;
- Максимальная длина трассы: до 90 м;
- Диапазон рабочих температур окружающего воздуха: от -15°C до +55°C.

КОНСТРУКЦИЯ КОРПУСА

Несущий корпус из оцинкованной стали с порошковым полиэфирным покрытием. Рамное основание 100 мм. Лёгкий доступ к внутренним компонентам с помощью съемных панелей.

КОМПРЕССОРЫ

Двухроторный компрессор Mitsubishi с трехфазным двигателем, оснащенным подогревом картера, установленный на виброизоляторах. Встроенная защита обмоток двигателя от перегрузки.

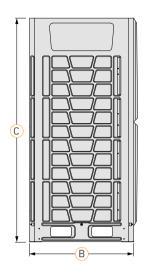
ВЕНТИЛЯТОРЫ

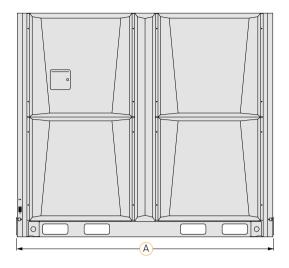
Осевые низкооборотные вентиляторы с инверторным мотором Direct Drive и лопатками особой формы (низкий уровень шума). Встроенная защита электродвигателя вентилятора от перегрева. Степень защиты: IP 54. Защитная решётка на нагнетании.

КОНДЕНСАТОР

Медный трубчатый теплообменник с оребрением из алюминиевых пластин.

БЛОК УПРАВЛЕНИЯ


В состав блока управления входят следующие компоненты: вводной выключатель; реле контроля фаз и индикаторы работа/ авария; цепь защиты с ручным возвратом аварии по температуре обмоток вентилятора, температуре нагнетания, высокому и низкому давлениям; сухие контакты для дистанционного управления работой и индикации работа / авария; контакты для подсоединения соленоидного вентиля.


холодильный контур

Один контур. Компоненты: реле высокого давления с ручным возвратом в рабочее состояние; реле низкого давления; датчик давления конденсации; сервисные клапаны Шредера; запорные вентили на выходе из компрессорно-конденсаторного блока.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Параметр			Типоразм	ıер VRCM	
параметр		050	060	070	085
Холодопроизводительность	кВт	50	61,5	73	85
Диапазон регулировки	% / кВт	50-130% / 25-65	50-130% / 30,75-79,95	50-130% / 36,5-94,9	50-130% / 42,5-110,5
Электрическая мощность	кВт	18,74	27,8	32	36,5
Производительность вентилятора	м³/ч	13500	16500	24000	26000
Питание	В/фаз/Гц		380-415	/3/50	
Марка компрессора		Mitsubishi	Mitsubishi	Mitsubishi	Mitsubishi
Фреон			R4	10A	
Диаметр жидкостной линии	ММ	Ø15,9	Ø15,9	Ø15,9	022
Диаметр паровой линии	ММ	028,6	028,6	Ø28,6	Ø35
Уровень звукового давления	дБ	62	63	66	67

ГАБАРИТЫ И МАССА

Обозначение		Размеры, мм		Manna ur
ооозначение	A	В	С	Масса, кг
VRCM 050	1740	840	1340	260
VRCM 060	1740	840	1340	298
VRCM 070	1740	840	1990	358
VRCM 085	1740	840	1990	410

В СОСТАВ КОМПЛЕКТА ККБ ВХОДИТ:

- электронный терморегулирующий вентиль и два обратных клапана в корпусе;
- электронный блок управления испарителем;
- проводной пульт управления охладителем.

ЧИЛЛЕР С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА JSA

Чиллеры серии JSA предназначены для подготовки жидкого хладоносителя, подаваемого в секцию водяного охладителя центрального кондиционера.

- Хладагент: фреон R410A;
- Тип исполнения: только охлаждение;
- Холодопроизводительность: от 43 до 245 кВт;
- Диапазон рабочих температур окружающего воздуха от +5 до +44°С;
- Коэффициент энергоэффективности: EER 3,2;
- Максимально возможное содержание гликоля в смеси хладоносителя — 40% (для исполнений со встроенным насосом).

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Благодаря большому количеству ступеней регулирования холодопроизводительности во многих случаях отпадает необходимость установки бака-накопителя;
- Сниженный уровень шума;
- Защита испарителя от замерзания благодаря реле протока;
- Возможность работы чиллера по температуре входящего и выходящего хладоносителя;
- Специальный алгоритм управления гарантирует стабильную работу компонентов контура во всех режимах эксплуатации, а также равномерную наработку компрессоров и насосов;
- Возможность подключения к системе диспетчеризации зданий BMS (опции EC, LW, MB);
- Большой эксплуатационный ресурс;
- При недостаточной производительности встроенных насосов чиллер может поставляться комплектно с выносным гидромодулем.

БЛОК УПРАВЛЕНИЯ

Блок управления расположен в отдельном отсеке внутри корпуса и включает в себя: контроллер, обеспечивающий управление чиллером, а также индикацию всех параметров: заданной и фактической температуры теплоносителя, реального времени, процента нагрузки, отображение состояния чиллера (работа / авария / блокировка), подключение к системе диспетчеризации по протоколам ЕС, LW или МВ; вводной выключатель; реле контроля последовательности и наличия фаз; модули расширения контроллера; устройства защиты двигателей компрессоров и насосов от перегрузки по току; цепь защиты электродвигателей вентиляторов и компрессоров по температуре обмоток, высокому и низкому давлениям в холодильном контуре; регулятор скорости вращения вентиляторов; трансформатор низковольтного питания цепей автоматики; магнитные пускатели.

КОМПРЕССОРЫ

Спиральные трехфазные компрессоры с подогревом картера и встроенной защитой двигателя от перегрузки.

типы исполнения

- 00 Без насосов;
- 1А Один встроенный низконапорный циркуляционный насос и расширительный бак;
- 1B Один встроенный средненапорный циркуляционный насос и расширительный бак;
- 1С Один встроенный высоконапорный циркуляционный насос и расширительный бак;
- 2A Два встроенных низконапорных циркуляционных насоса, обратные клапаны и расширительный бак;
- 2В Два встроенных средненапорных циркуляционных насоса, обратные клапаны и расширительный бак;
- 2С Два встроенных высоконапорных циркуляционных насоса, обратные клапаны и расширительный бак.

ОПЦИОНАЛЬНОЕ ОСНАЩЕНИЕ

- EC плата последовательного интерфейса технологии Ethernet (Web Server):
- MB плата последовательного интерфейса RS 485 (Modbus);
- LS малошумное исполнение (только для исполнения 00);
- LW плата последовательного интерфейса LonWorks;
- RS выносной дисплей.

Примечание: Для любого чиллера может применяться только одна из трех опций ЕС, МВ, LW.

ВАРИАНТЫ ПОДСОЕДИНЕНИЯ ВВОДНЫХ ТРУБ ГИДРАВЛИЧЕСКОГО КОНТУРА:

- R коническая трубная резьба по ГОСТ 6211–81/ISO R7/DIN 2999 (стандартное исполнение – в обозначении не указывается);
- V грувлочное по ГОСТ Р 51737-2001;
- G цилиндрическая трубная резьба по ГОСТ 6357-81 / ISO R228 / DIN 259;
- F фланцевое по ГОСТ 33259-2015.

Типоразмер		045	050	055	065	080	090	100	115	130	150	170	190	220	250
					ОХЛАЖ	ДЕНИЕ									
Холодопроизводительность*	кВт	43	51	58	69	78	86	101	115	126	150	173	196	224	245
Количество	шт.	3	3	3	ΚΟΜΠΡΕ 4	-ссоры 4	6	6	6	6	6	6	6	6	6
Потребляемая мощность*	кВт	13.4	15.5	18.0	20.6	24.0	26.9	31.1	36.0	39.6	45.7	52.2	60.0	69	77,7
Максимальный рабочий ток	Α	28.8	36,6	42,5	48.8	52.0	57,6	73,2	78,0	107,4	111,6	107.4	128,4	141.6	166
Максимальный пусковой ток	A	101.0	111.0	126.0	123.0	139.0	130.0	148.0	165.0	215,0	218.0	215.0	254,0	276	335
Количество холодильных контуров	ШТ.	1	1	1	2	2	2	2	2	2	2	2	2	2	2
Количество ступеней		_	_	_				_	_	_	_	_	_	_	_
производительности	ШТ.	3	3	3	4	4	5	5	5	5	5	5	5	5	5
Ступени производительности	%	0-	-33-66-10	00	0-25-50	-75-100	0-33	-50-67-84	4-100			0-33-50-	67-84-100)	
				ВЕНТИ	ІЛЯТОР К	ОНДЕНО	ATOPA								
Количество вентиляторов	ШТ.	2	2	2	2	2	2	2	2	2	2	3	3	3	3
Расход воздуха	м ³ /с	3,50	3,50	3,50	4,72	4,72	8,00	8,00	7,63	8,33	8,33	12,10	11,50	13,9	13,9
Питание	В/Гц/фаз														1
Мощность	кВт	1,1	1,1	1,1	1,1	1,1	2,2	2,2	2,2	2,2	2,20	3,30	3,30	5	5
			2		IECUME V	/ A DA I/TE	DIACTIAL	114							
Электропитание	В/Гц/фаз		3,	HEKIPM	HECKNE)	KAPAKIE	РИСТИР)/3+PE						
· · · · · · · · · · · · · · · · · · ·	Б/ТЦ/фаз							400/30	J/ J 11 L						
Максимальный рабочий ток блока без насосов	Α	32,6	40,4	42,8	52,6	55,8	64,2	79,8	84,6	114,0	118,2	116,8	137,8	155,2	179
Максимальный рабочий ток блока с насосами «А»	А	34,8	42,6	45,0	55,6	58,8	67,2	84,2	89,0	118,4	122,6	121,2	143,8	****	****
Максимальный рабочий ток	Α	35,6	43.4	47,2	57.0	60.2	68,6	87.8	92,6	122.0	126,2	124.8	145,8	170.2	194
блока с насосами «В»			,.	,_	,-	,-	,-		,-	,-	,-	,-	,-	,-	
Максимальный рабочий ток блока с насосами «С»	Α	38,6	46,4	48,8	58,6	61,8	72,2	87,8	95,6	125,0	133,2	131,8	159,8	177,2	201
					oo nauoi	á HOUTV	_								
Расход воды	л/с	2.0	2.4	2.7	зодяной 3,3	3,7	4,1	4.8	5,5	5.9	7.1	8.2	9.3	10.7	11,8
	71/ C	,						,			,	,	,	,	
Потеря давления в пластинчатом теплообменнике	кПа	20	22	20	21	21	21	22	23	24	25	31	31	33	35
Полный напор насоса 1А, 2А	кПа	160/150	170/160	180/165	190/175	179/168	180/170	220/205	165/143	173/146	154/124	130/100	153/113	****	****
Полный напор насоса 1B, 2B	кПа	240/230	250/240	310/298	240/223	232/221	250/240	300/290	290/265	295/268	277/248	258/235	232/192	371/331	345/300
Полный напор насоса 1С, 2С	кПа	385/375	395/385	405/390	332/315	317/306	416/403	380/356	365/340	370/343	443/414	420/400	566/526	546/508	505/465
Минимальный объем системы для работы без аккумулирую-	M ³	0,15	0,17	0,17	0,17	0,19	0,15	0,17	0,19	0,21	0,24	0,26	0,30	0,34	0,38
щего бака		, '	,				•								

АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

65

69

69

Уровень звукового давления***

дБ(А)

65

69

69

71

71

74

74

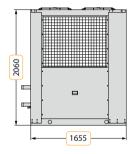
^{*} условия: температура охлаждаемой воды от 12 до 7°С, температура окружающего воздуха 35°С.

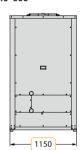
^{**} температура кипения +12°C *** используемое компрессорное масло PVE320HV (FVC68D) (поливинилэфирное) везде,

кроме моделей 190-250 — здесь POE160SZ (полиэфирное) **** моделей с использованием насосов «А» нет

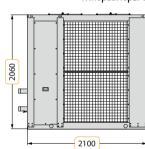
^{*****} предварительное давление в расширительном баке 1,5 кгс/см², устанавливается совместно с насосом

^{******} уровень звукового давления измерен в свободном звуковом поле на расстоянии 1 м от агрегата (со стороны всасывания) и 1,5 м от опорной поверхности согласно DIN 45 635.

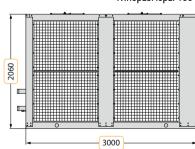

ГАБАРИТЫ И МАССА

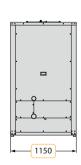

ADAPHIDI NI MACCA															
Типоразмер		045	050	055	065	080	090	100	115	130	150	170	190	220	250
			- 1	ГАБАРИ	ТНЫЕ РА	ЗМЕРЫ									
Длина	ММ	1655	1655	1655	1655	1655	2100	2100	2100	3000	3000	3000	3000	3000	3000
Ширина	ММ	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150
Высота	ММ	2060	2060	2060	2060	2060	2060	2060	2060	2060	2060	2060	2060	2060	2060
ПАТРУБКИ ГИДРАВЛИЧЕСКОГО КОНТУРА ПИЗИОТЬ DD 50 50 50 50 50 50 45 45 45 80 80 80 80															
Диаметр	Dn	50	50	50	50	50	50	65	65	65	65	80	80	80	80
Соединение резьбовое (наружная резьба)	R	2"	2"	2"	2"	2"	2"	2 1/2""	2 1/2""	2 1/2""	2 1/2""	3"	3"	3"	3"
					MACCA										
Транспортировочная масса без насосов (1)	КГ	684	715	730	746	808	973	1009	1025	1257	1302	1337	1465	1492	1502
Транспортировочная масса блоков (2)	КГ	724	765	780	806	868	1043	1079	1095	1327	1372	1417	1545	****	****
Транспортировочная масса блоков (3)	КГ	734	775	795	816	878	1053	1089	1105	1347	1382	1427	1555	1602	1612
Транспортировочная масса блоков (4)	КГ	744	785	805	826	888	1063	1099	1115	1357	1402	1437	1595	1612	1622
Транспортировочная масса блоков (5)	КГ	764	805	825	846	908	1083	1119	1135	1387	1432	1467	1615	****	****
Транспортировочная масса блоков (6)	КГ	784	825	845	866	928	1103	1139	1155	1417	1452	1487	1625	1692	1702
Транспортировочная масса блоков (7)	КГ	804	845	865	886	948	1123	1159	1175	1457	1482	1517	1695	1722	1732

^{*} Также доступны фланцевое по ГОСТ 12815-80, грувлочное или резьбовое по ГОСТ Р 51737-2001, или резьбовое по ГОСТ 6357-81. **** Данные сочетания чиллера и встроенных насосов не производятся


- (1) агрегат без насосов (2) агрегат с одним насосом «А» (3) агрегат с одним насосом «В»
- (4) агрегат с одним насосом «С»
- (5) агрегат с двумя насосами «А» (6) агрегат с двумя насосами «В» (7) агрегат с двумя насосами «С»

Типоразмеры 045-080




Типоразмеры 090-115

Типоразмеры 130-250

ЧИЛЛЕР С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА ТВА

Моноблочные чиллеры ТВА предназначены для подготовки жидкого хладоносителя, подаваемого в секцию водяного охладителя центрального кондиционера.

- Хладагент: фреон R410A;
- Тип исполнения: только охлаждение;
- Холодопроизводительность: от 284 до 1074 кВт;
- Диапазон рабочих температур окружающего воздуха от +5 до +43°C;
- Коэффициент энергоэффективности: EER 3,2;
- Максимально возможное содержание гликоля в смеси хладоносителя составляет 40% (для исполнений со встроенным насосом).

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Большое количество ступеней регулирования холодопроизводительности позволяет отказаться от применения дополнительных внешних аккумулирующих емкостей.
- Высокий холодильный коэффициент и минимальное энергопотребление при частичных нагрузках.
- Использование высокоэффективных микроканальных теплообменников конденсатора позволило снизить габариты и вес разработанных чиллеров, а также минимизировать заправку хладагентом.
- Алгоритм управления чиллером обеспечивает стабильную работу компонентов холодильного контура в расчетных режимах эксплуатации, а также равномерную наработку компрессоров и насосов
- Большой выбор встроенных насосов с разными напорными характеристиками позволяет оптимально подобрать модификацию встроенного гидромодуля под необходимые характеристики сети.
- Отсутствие необходимости во внешней гидравлической насосной станции.
- Тестирование всех параметров работы чиллера производится на уникальном высокоточном заводском стенде.
- Все выпускаемые модели поставляются заправленные хладагентом.
- При недостаточной производительности встроенных насосов может поставляться комплектно с выносным гидромодулем.

БЛОК УПРАВЛЕНИЯ

В состав блока управления входят следующие компоненты: главный выключатель с устройством блокировки дверей; автоматические выключатели для всех компрессоров и цепей управления; свободно-программируемый контроллер со встроенным дисплеем; контроллер, обеспечивающий управление чиллером, а также индикацию всех параметров: заданной и фактической температуры теплоносителя, реального времени, процента нагрузки, отображение состояния чиллера (работа / авария / блокировка), подключение к системе диспетчеризации по протоколам ЕС, LW или MB.

исполнения:

- Без насосов.
- Один встроенный низконапорный циркуляционный насос;
- Один встроенный средненапорный циркуляционный насос;
- Один встроенный высоконапорный циркуляционный насос;
- Два встроенных низконапорных циркуляционных насоса (ротация по наработке);
- Два встроенных средненапорных циркуляционных насоса (ротация по наработке);
- Два встроенных высоконапорных циркуляционных насоса (ротация по наработке).

ВСТРАИВАЕМЫЕ ОПЦИИ:

1А – один низконапорный насос

1В – один средненапорный насос

1С – один высоконапорный насос

2А – два низконапорных насоса

2В – два средненапорных насоса

2С – два высоконапорных насоса

ВСТРАИВАЕМЫЕ ОПЦИИ:

ZV – запорные клапаны холодильных контуров

АК – шумоглушащие кожухи компрессоров

SC – ступенчатое регулирование вентиляторами

PR – плавное регулирование скоростью вращения вентиляторов

MN — манометры высокого и низкого давления фреоновых контуров

FS – реле протока

опции, поставляемые отдельно:

RS1, RS2 – выносной дисплей (до 100 м или до 1000 м)

RI – последовательный интерфейс RS485

RA – резиновые виброизоляторы

SA – пружинные виброизоляторы

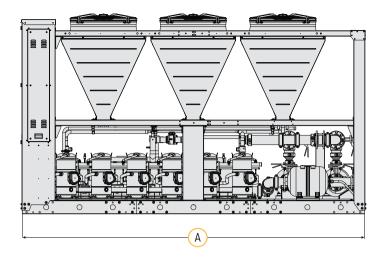
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

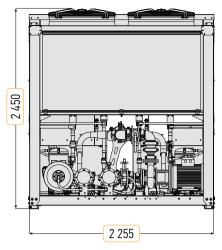
TARM TECRME ARPANTEFULTURM															
Типоразмер		270	310	370	430	470	500	550	590	650	740	810	900	980	1100
			0)	КЛАЖД	ЕНИЕ										
Холодопроизводительность*	кВт	284	315	371	412	454	489	530	563	623	704	767	860	947	1074
			K	МПРЕС	CUPPI										
Количество	шт	6	8	8	10	10	12	12	12	10	12	10	12	10	12
Количество холодильных контуров	шт	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Количество ступеней холодопроизводительности	шт	5	7	7	9	9	11	11	11	9	11	9	11	9	11
		ВІ	ЕНТИЛЯ	ТОР КО	НДЕНС	ATOPA									
Количество вентиляторов	шт.	4	4	6	6	6	6	6	8	8	8	10	10	12	12
Расход воздуха	м³/c	22,78	22,78	34,33	34,33	34,33	34,33	34,33	45,78	45,78	45,78	57,22	57,22	68,67	68,6
		элек	тричес	КИЕ ХА	APAKTE	РИСТИН	КИ								
Электропитание	В/Гц/фаз							400 / 50	/ 3+N+P	E					
Полная мощность без насосов*	кВт	90	101	118	131	145	157	171	180	200	227	246	277	304	34
Максимальный рабочий ток без насосов	А	215	236	281	314	343	362	383	423	450	503	558	618	687	77
Максимальный пусковой ток без насосов	А	363	360	439	421	491	474	551	559	601	523	577	637	714	79
Максимальный рабочий ток с низконапорными насосами 1A, 2A	А	225	246	291	325	356	375	396	436	463	530	590	650	720	80
Максимальный рабочий ток с средненапорными насосами 1B, 2B	А	228	250	295	327	362	381	402	442	482	535	596	655	739	82
Максимальный рабочий ток с высоконапорными насосами 1С, 2С****	A	235	256	301	334	369	388	410	449	477	503	558	618	687	77
			ВОД	і йонкі	КОНТУР	ı									
Расход воды*	л/с	13,56	15,03	17,71	19,68	21,69	23,36	25,32	26,90	29,77	33,64	36,65	41,09	45,25	51,3
Потеря давления в теплообменнике*	кПа	41	58	71	57	80	65	83	70	69	88	45	67	49	70
Располагаемое статическое давление 1А, 2А	кПа	215	205	195	200	217	206	205	198	186	195	187	180	233	21
Располагаемое статическое давление 1B, 2B	кПа	295	290	270	275	300	296	281	310	334	330	310	300	280	30
Располагаемое статическое давление 1C, 2C	кПа	380	365	355	365	380	380	371	367	350	400	360	330	430	40
Минимальный объем системы для работы без аккумулирующего бака	M ³	0,42	0,40	0,45	0,39	0,49	0,40	0,51	0,52	0,67	0,69	0,88	0,79	1,11	1,0
Объем расширительного бака**	Л	24	24	24	24	24	24	50	50	50	50	50	50	50	50
		АКУ	СТИЧЕС	КИЕ ХА	PAKTEP	истик	И								
Уровень звукового давления***	дБ(А)	76	76	79	79	80	79	80	81	85	86	85	86	86	87

¹А – чиллер со встроенным низконапорным циркуляционным насосом

¹B — чиллер со встроенным средненапорным циркуляционным насосом 1C — чиллер со встроенным высоконапорным циркуляционным насосом

²А – чиллер с двумя встроенными низконапорными циркуляционными насосами


²В – чиллер с двумя встроенными средненапорными циркуляционными насосами


²С — чиллер с двумя встроенными высоконапорными циркуляционными насосами

^{*} Условия: температура воды входящей 12°С, выходящей 7°С, температура

окружающего воздуха 35°С. ** Установлен в чиллерах со встроенными насосами, предварительное давление

в расширительном баке 1,5 атм. *** Уровень звукового давления измерен в свободном звуковом поле на расстоянии 1 м от чиллера (со стороны всасывания) и 1,5 м от опорной поверхности согласно DIN 45635.

ГАБАРИТЫ И МАССА

Типоразмер		270	310	370	430	470	500	550	590	650	740	810	900	980	1100
Длина А	ММ	3230	3230	3920	3920	3920	4215	4215	5020	5020	5350	6115	6115	7215	7215
Ширина В	ММ	2255	2255	2255	2255	2255	2255	2255	2255	2255	2255	2255	2255	2255	2255
Высота С	ММ	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
Транспортировочная масса без насосов	КГ	2050	2200	2600	3020	3050	3250	3300	3700	4050	4400	4600	4850	5600	6000
Транспортировочная масса агрегата со встроенным насосом типа 1A	КГ	2300	2460	2900	3320	3350	3500	3600	4000	4400	4900	4900	5250	5950	6300
Транспортировочная масса агрегата со встроенным насосом типа 1В	КГ	2300	2460	2900	3300	3400	3600	3650	3900	4400	4850	4800	5100	5850	6400
Транспортировочная масса агрегата со встроенным насосом типа 1С	КГ	2250	2420	2850	3250	3400	3600	3650	4050	4500	4900	5000	5300	6100	6500
Транспортировочная масса агрегата со встроенным насосом типа 2A	КГ	2550	2700	3100	3550	3550	3700	3800	4200	4650	5200	5300	5600	6300	6700
Транспортировочная масса агрегата со встроенным насосом типа 2B	КГ	2500	2700	3100	3500	3700	3850	3900	4100	4600	5150	5100	5400	6100	6800
Транспортировочная масса агрегата со встроенным насосом типа 2C****	КГ	2450	2650	3050	3450	3700	3900	3950	4350	4800	5200	5400	5700	-	-

¹A — чиллер со встроенным низконапорным циркуляционным насосом 1B — чиллер со встроенным средненапорным циркуляционным насосом

¹С — чиллер со встроенным высоконапорным циркуляционным насосом

²А – чиллер с двумя встроенными низконапорными циркуляционными насосами

²В – чиллер с двумя встроенными средненапорными циркуляционными насосами

²С – чиллер с двумя встроенными высоконапорными циркуляционными насосами

^{****} Чиллеры ТВА 980 и ТВА 1100 могут быть изготовлены только с одним высоконапорным насосом.

ЧИЛЛЕР ДЛЯ РАБОТЫ С ВЫНОСНЫМ КОНДЕНСАТОРОМ JSE

Чиллеры серии JSE предназначены для подготовки жидкого хладоносителя, подаваемого в секцию водяного охладителя центрального кондиционера.

- Тип исполнения: только охлаждение;
- Хладагент: фреон R410A;
- Холодопроизводительность: от 43 до 245 кВт:
- Диапазон рабочих температур окружающего воздуха от +5 до +43°C;
- Коэффициент энергоэффективности: EER 3,5;
- Максимально возможное содержание гликоля в смеси хладоносителя составляет 40% (для исполнений со встроенным насосом).

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Схема холодильного контура с выносным конденсатором позволяет размещать чиллер внутри помещения;
- Благодаря компактным габаритам (ширина 0,77 м, макс. высота — 1,8 м) чиллер легко проходит через дверной проем;
- Благодаря большому количеству ступеней регулирования холодопроизводительности во многих случаях отпадает необходимость установки бака-накопителя;
- Защита испарителя от замерзания благодаря реле протока;
- Возможность работы чиллера по температуре входящего и выходящего хладоносителя;
- Специальный алгоритм управления гарантирует стабильную работу компонентов контура во всех режимах эксплуатации, а также равномерную наработку компрессоров и насосов;
- Сниженный уровень шума;
- Большой эксплуатационный ресурс;
- Поставляются комплектно с выносным конденсатором;
- При недостаточной производительности встроенных насосов может поставляться комплектно с выносным гидромодулем.

БЛОК УПРАВЛЕНИЯ

Расположен в отдельном шкафу, установленном на корпусе, включает в себя: контроллер обеспечивающий управление чиллером, а также индикацию всех параметров: заданной и фактической температуры теплоносителя, реального времени, процента нагрузки, отображение состояния чиллера (работа/авария/блокировка), подключение к системе диспетчеризации по протоколам ЕС, LW или МВ; вводной выключатель; реле контроля последовательности и наличия фаз; модули расширения контроллера; устройства защиты двигателей компрессоров и насосов от перегрузки по току; цепь защиты электродвигателей компрессоров по температуре обмоток, высокому и низкому давлениям в холодильном контуре; трансформатор низковольтного питания цепей автоматики; магнитные пускатели.

типы исполнения

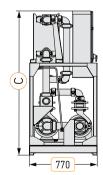
- 00 Без насосов:
- 1А Один встроенный низконапорный циркуляционный насос и расширительный бак:
- 1В Один встроенный средненапорный циркуляционный насос и расширительный бак;
- 1С Один встроенный высоконапорный циркуляционный насос и расширительный бак;
- 2A Два встроенных низконапорных циркуляционных насоса и расширительный бак;
- 2В Два встроенных средненапорных циркуляционных насоса и расширительный бак;
- 2С Два встроенных высоконапорных циркуляционных насоса и расширительный бак.

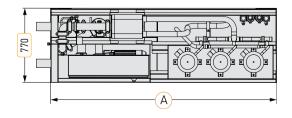
ОПЦИИ ВСТРАИВАЕМЫЕ:

- АК шумопоглощающие кожухи компрессоров;
- EC плата последовательного интерфейса технологии Ethernet (Web Server):
- MB плата последовательного интерфейса RS 485;
- LW плата последовательного интерфейса платформы LonWorks;
- RS внешняя панель управления с экраном.
 Примечание: Для любого чиллера может применяться только одна из трех опций EC, MB, LW.

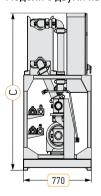
ТИП СОЕДИНЕНИЯ:

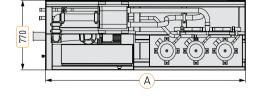
- R коническая трубная резьба по ГОСТ 6211-81 / ISO R7 / DIN 2999 (стандартное исполнение – в обозначении не указывается);
- V грувлочное по ГОСТ Р 51737-2001;
- G цилиндрическая трубная резьба по ГОСТ 6357-81 / ISO R228 / DIN 259;
- F фланцевое по ГОСТ 33259-2015.


ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ


ТЕХНИЧЕСКИЕ ХАРАКТЕРИС	ТИКИ	ı	ı	ı	ı	ı	ı	ı		ı	I	ı			
Типоразмер		045	050	055	065	080	090	100	115	130	150	170	190	220	250
					ОХЛА	КДЕНИЕ									
Холодопроизводительность*	кВт	43	51	58	69	78	86	101	115	126	150	173	196	224	245
					комп	ессорь	ı								
Количество	ШТ.	3	3	3	4	4	6	6	6	6	6	6	6	6	6
Потребляемая мощность*	кВт	13,2	15,3	17,4	20,4	23,2	26,4	30,7	34,8	38,3	44,1	50,3	57,8	66,5	74,7
Максимальный рабочий ток	Α	28,8	36,6	42,5	48,8	52,0	57,6	73,2	78,0	107,0	111,6	107,4	128,4	141,6	166
Максимальный пусковой ток	А	101,0	111,0	126,0	123,0	139,0	130,0	148,0	165,0	215,0	218,0	215,0	254,0	276	335
Количество холодильных контуров	ШТ.	1	1	1	2	2	2	2	2	2	2	2	2	2	2
Количество ступеней производительности	ШТ.	3	3	3	4	4	5	5	5	5	5	5	5	5	5
Ступени производительности	%	0	-33-66-10	00	0-25-50	75-100	0-33	-50-67-8	4-100			0-33-50-	67-84-100)	
Количество масла в чиллере***	Л	5,3	5,3	5,3	7,1	7,1	10,6	10,6	10,6	16,6	16,6	16,6	22,8	22,8	24,6
			;	электри	14ЕСКИЕ	XAPAKT	ЕРИСТИ	КИ							
Электропитание	В/фаз/Гц		1	T .	I		1	400 / 5	0 / 3+PE	1		1	1	I	
Максимальный рабочий ток блока без насосов	A	30,0	38,0	40,0	50,0	53,0	59,0	74,0	79,0	108,0	113,0	108,0	129,0	143	167
Максимальный рабочий ток блока с насосами «А»	А	32,0	40,0	42,0	53,0	56,0	62,0	79,0	83,0	113,0	117,0	113,0	135,0	****	****
Максимальный рабочий ток блока с насосами «В»	А	33,0	41,0	44,0	54,0	57,0	63,0	82,0	90,0	119,0	128,0	123,0	151,0	165	189
Максимальный рабочий ток блока с насосами «С»	A	36,0	44,0	46,0	56,0	59,0	67,0	82,0	95,0	125,0	133,0	132,0	160,0	177	201
				ď	PEOHOB	РІЙ КUH.	TVP								
Количество масла в чиллере***	л	5,3	5,3	5,3	7,1	7,1	10,6	10,6	10,6	16,6	16,6	16,6	22,8	22,8	24,6
Масса начальной заправки			10	15	0.5		0.0		0.11	0.15	0.15	0.00	0.00	0.00	0.04
чиллера, кг	КГ	11	13	15	2×5	2×7	2×8	2×9	2×11	2×15	2×17	2×20	2×22	2×23	2×24
Газовая линия (всасывание)	мм	16	16	16	2×16	2×19	2×22	2×22	2×22	2×28	2×28	2×28	2×35	2×35	2×35
тазовал липил (всасывание)	дюйм	5/8"	5/8"	5/8"	2×5/8"	2×3/4"	2×7/8"	2×7/8"	2×7/8"	2×1 1/8"	2×1 1/8"	2×1 1/8"	2×1 3/8"	2×1 3/8'	2×1 3/8
Жидкостная линия (нагнетание)	ММ	19	19	19	2×16	2×16	2×19	2×19	2×19	2×19	2×22	2×22	2×22	2×28	2×28
THE TAIL TO THE TAIL THE	дюйм	3/4"	3/4"	3/4"	2×5/8"	2×5/8"	2×3/4"	2×3/4"	2×3/4"	2×3/4"	2×7/8"	2×7/8"	2×7/8"	2×1 1/8'	2×1 1/8
				ГИД	РАВЛИЧ	ЕСКИЙ Н	ЮНТУР								
Deeve a per u	л/с	2,0	2,4	2,7	3,3	3,7	4,1	4,8	5,5	5,9	7,1	8,2	9,3	10,7	11,8
Расход воды	м³/час	7,2	8,6	9,7	11,9	13,3	14,8	17,3	19,8	21,2	25,6	29,5	33,5	38,5	42,5
Потеря давления в пластинчатом теплообменнике*	кПа	20	22	20	21	21	21	22	23	24	25	31	31	33	35
Располагаемый напор чиллера с насосами 1A / 2A	кПа	160/150	170/160	180/165	190/175	179/168	180/170	220/205	165/143	173/146	154/124	130/100	153/113	****	****
Располагаемый напор чиллера с насосами 1В / 2В	кПа	240/230	250/240	310/298	240/223	232/221	250/240	300/290	290/265	295/268	277/248	258/235	232/192	371/331	345/300
Располагаемый напор чиллера с насосами 1C / 2C	кПа	385/375	395/385	405/390	332/315	317/306	416/403	380/356	365/340	370/343	443/414	420/400	566/526	546/508	505/465
Номинальная мощность насоса «А»	кВт	1,1	1,1	1,1	1,5	1,5	1,5	2,2	2,2	2,2	2,2	2,2	3	****	****
Номинальная мощность насоса «В»	кВт	1,5	1,5	2,2	2,2	2,2	2,2	4	4	4	4	4	4	7,5	7,5
Номинальная мощность насоса «С»	кВт	3	3	3	3	3	4	4	5,5	5,5	7,5	7,5	11	11	11
Минимальный объем системы для работы без аккумулирующего бака	M ³	0,15	0,17	0,17	0,17	0,19	0,15	0,17	0,19	0,21	0,24	0,26	0,30	0,34	0,38
Объем расширительного бака*****	Л	8	8	8	8	12	12	12	12	18	18	18	18	18	18
Диаметр условного прохода (Ду)	ММ	50	50	50	50	50	50	65	65	65	65	80	80	80	80
Соединение резьбовое по ГОСТ 6211-81******	R	2"	2"	2"	2"	2"	2"	2 1/2""	2 1/2""	2 1/2""	2 1/2""	3"	3"	3"	3"

Типоразмер		045	050	055	065	080	090	100	115	130	150	170	190	220	250
				шум	ODLIE VA	PAKTEPI	АСТІЛІЛІ								
				ШУМІ	JBDIE XA	PARTEP	ПСТИКИ								
Уровень звукового давления*****	дБ(А)	59	59	59	59	59	61	61	61	61	61	63	63	66	66
Уровень звукового давления с опцией АК*****	дБ(А)	55	55	55	55	55	57	57	57	57	57	59	59	62	62
				ГА	БАРИТН	ЫЕ РАЗМ	ІЕРЫ								
Длина (А)	ММ	1500	1500	1500	1500	1500	1700	1700	1700	1700	1700	1700	2200	2200	2200
Ширина (B)	ММ	770	770	770	770	770	770	770	770	770	770	770	770	770	770
Высота (С)	ММ	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1800	1800	1800
	ı	ı	ı	ı	М	ACCA		ı	I	I			ı	ı	
Транспортировочная масса исполнение АК	КГ	535	540	550	575	615	790	795	830	850	1020	1045	1070	1130	1180
Транспортировочная масса без насосов U0	КГ	520	525	535	555	595	760	765	800	820	990	1015	1040	1100	1150
Транспортировочная масса с одним насосом (1A)	КГ	560	562	575	605	645	805	810	835	860	1040	1055	1085	****	****
Транспортировочная масса с одним насосом (1B)	КГ	565	570	585	630	655	820	825	845	875	1060	1075	1100	1160	1210
Транспортировочная масса с одним насосом (1C)	КГ	580	585	595	635	660	825	830	845	925	1120	1135	1140	1220	1270
Транспортировочная масса с двумя насосами (2A)	КГ	595	595	610	655	700	855	860	895	925	1105	1130	1150	****	****
Транспортировочная масса с двумя насосами (2B)	КГ	605	610	635	685	725	880	885	910	950	1145	1170	1180	1260	1310
Транспортировочная масса с двумя насосами (2C)	КГ	640	645	660	680	730	895	900	925	1050	1250	1270	1300	1350	1400


^{*} условия: температура охлаждаемой воды от +12 до +7°C


Модели с одним насосом

Модели с двумя насосами

условия, тентрептура отояжальной вобов вт 12 об 17 с средняя температура конденсации +50°С **температура кипения +12°С, температура конденсации +65°С **** используемое компрессорное масло PVE320HV (FVC68D) (поливинилэфирное) везде, кроме моделей 190-250 — эдесь P0E160SZ (полиэфирное) **** моделей с использованием насосов «А» нет

^{*****} предварительное давление в расширительном баке 150 кПа,

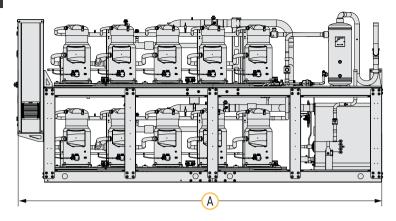
устанавливается совместню с насосом
******* уровень звукового давления измерен в свободном звуковом поле на расстоянии 1 м от агрегата (со стороны всасывания) и 1,5 м от опорной поверхности согласно DIN 45 635.
******* Также доступны фланцевое по ГОСТ 12815-80, грувлочное или резьбовое по ГОСТ Р 51 737-2001, или резьбовое по ГОСТ 6357-81.

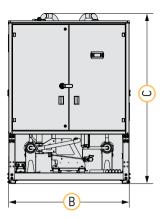
ЧИЛЛЕР ДЛЯ РАБОТЫ С ВЫНОСНЫМИ КОНДЕНСАТОРАМИ ТВЕ

Чиллеры ТВЕ предназначены для подготовки жидкого хладоносителя, подаваемого в секцию водяного охладителя центрального кондиционера.

- Тип чиллера: только охлаждение;
- Холодопроизводительность: от 276 до 1054 кВт;
- Хладагент: фреон R410A;
- Предназначены для установки в отапливаемом помещении;
- Диапазон температур конденсации от +30 до +60°С;
- Коэффициент энергоэффективности: EER 3,5;
- Максимально возможное содержание гликоля в смеси хладоносителя составляет 40% (для исполнений со встроенным насосом);
- Предназначены для работы с выносными конденсаторами.

ПРЕИМУЩЕСТВА


- Отсутствие необходимости применения бака-накопителя за счет увеличенного количества ступеней регулирования холодопроизводительности.
- Небольшие габариты чиллера.
- Высокий холодильный коэффициент и минимальное энергопотребление на частичных нагрузках.
- Стабильная работа компонентов холодильного контура во всех режимах эксплуатации, а также равномерная наработка компрессоров за счет специально разработанного алгоритма управления водоохлаждающей машиной.
- Дополнительная комплектация выносной панелью управления с возможностью дистанционного изменения его параметров и режимов работы. Полный доступ и отображение всех меню контроллера.
- Высокая эксплуатационная надежность.
- Экономия электроэнергии.
- Бесперебойная работа.
- Низкий уровень шума и вибрации.
- Эстетичный внешний вид.
- Возможность подключения к системе диспетчеризации зданий по протоколам EC, LW или MB.
- Поставляются заправленные хладагентом.
- Поставляются комплектно с выносным конденсатором.
- При недостаточной производительности встроенных насосов могут поставляться комплектно с выносным гидромодулем.


ОСОБЕННОСТИ КОНСТРУКЦИИ:

- Спиральные трехфазные компрессоры со встроенной защитой от перегрузки и подогревом картера.
- Пластинчатый медно-паяный испаритель из нержавеющей стали с двумя независимыми холодильными контурами на стороне хладагента и одним на стороне воды.
- Несущая рама из оцинкованной стали с порошковым полиэфирным покрытием. Удобный доступ к внутренним компонентам.

опции:

- MN манометры высокого и низкого давления фреоновых контуров
- RS1, RS2 выносной дисплей (до 100 м или до 500 м)
- RA резиновые виброизоляторы
- SA пружинные виброизоляторы
- FS реле протока
- АК шумоглушащие кожухи компрессоров
- SK комплект масляного фильтра
- RI последовательный интерфейс RS485

Типоразмер		270	300	360	410	460	500	560	630	720	780	900	960	1100
			-											
V*	D	27/		ЛАЖДЕ	1	,,,	/70	F/1	/10	701	750	050	007	105/
Холодопроизводительность*	кВт кВт	276 356	315 407	368 475	400 516	573	479 619	541 699	613 792	701 907	753 973	850 1100	927 1197	1054
Теплопроизводительность	KDI	330	407	4/3	310	3/3	017	077	172	707	7/3	1100	1177	1304
			К0	мпресс	ОРЫ									
Количество	ШТ.	6	8	8	10	10	12	12	10	12	10	12	10	12
Количество холодильных контуров	шт.	2	2	2	2	2	2	2	2	2	2	2	2	2
Количество ступеней холодопроизводительности	шт.	5	7	7	9	9	11	11	9	11	9	11	9	11
		ЭЛЕН	КТРИЧЕС	KUE XAF	РАКТЕРИ	СТИКИ								
Электропитание	В/Гц/фаз							00/50/3+						
Полная мощность*	кВт	80	93	107	116	129	140	158	179	206	220	249	271	310
Максимальный рабочий ток	A	180	212	240	265	300	318	360	393	472	482	578	603	724
Максимальный пусковой ток	А	347	370	407	397	467	450	527	569	647	694	790	863	983
ВОДЯНОЙ КОНТУР ИСПАРИТЕЛЯ														
Расход воды*	л/с	13,20	15,03	17,60	19,12	21,21	22,88	25,83	29,29	33,49	35,99	40,62	44,29	50,34
Потеря давления в теплообменнике*	кПа	39	58	70	47	76	52	65	58	87	44	72	47	72
Патрубки водяного контура	дюйм	3"	3"	3"	3	3	3	3	3	3	6	6	6	6
Минимальный объем системы для работы без аккумулирующего бака	M ³	0,42	0,40	0,45	0,42	0,46	0,42	0,47	0,64	0,62	0,79	0,75	0,97	0,93
	ı	АКУС	ТИЧЕСЬ	ИЕ ХАР	АКТЕРИ	стики					1		1	
Уровень звукового давления **	дБ(А)	75	72	76	73	77	74	78	82	83	84	85	82	83
	ГАБАРИ	ты и м	۷ . ۲۷ کا	S TDVH	СПОРТИ	DUBUAL	ורוא טענ	1D						
Длина, А	MM	2500	2950	3100	3530	3530	4130	4130	4260	4820	4820	5250	5250	5450
Ширина, В	мм	810	810	810	810	810	810	810	1410	1410	1410	1410	1410	1410
Высота. С	ММ	1940	1940	1940	1940	1940	1940	1940	2000	2000	2000	2000	2000	2000
Macca	КГ	1050	1200	1300	1500	1520	1760	1790	2300	2600	2600	2850	3160	3560
	1			1	-	1	1	1			1		1	
	АБАРИТЬ	и мас	CCA C TP	АНСПОГ	тирово	ОЧНЫМІ	1 ОПОРА	МИ						
Длина, А	ММ	2500	2950	3100	3530	3530	4130	4130	4260	4820	4820	5250	5250	5450
Ширина, В	ММ	855	855	855	855	855	855	855	1410	1460	1460	1460	1460	1460
Высота, С	ММ	2040	2040	2040	2040	2040	2040	2040	2100	2100	2100	2100	2100	2100
Транспортировочная масса	КГ	1060	1210	1310	1510	1530	1770	1800	2315	2615	2615	2865	3175	3580

^{*} Условия: температура воды входящей испарителя +12°C, выходящей +7°C, температура конденсации +50°C
** Уровень звукового давления измерен в свободном звуковом поле на расстоянии 1 м от чиплера (со стороны всасывания) и 1,5 м от опорной поверхности согласно DIN 45635.

ЧИЛЛЕР С ВОДЯНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА JSH

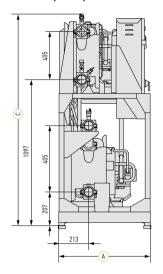
Чиллеры JSH предназначены для подготовки жидкого хладоносителя, подаваемого в секцию водяного охладителя центрального кондиционера

- Тип чиллера: только охлаждение;
- Хладагент: фреон R410A;
- Холодопроизводительность: от 46 до 280 кВт;
- Коэффициент энергоэффективности: EER 4,5;
- Диапазон рабочих температур окружающего воздуха: от +15°C до +40°C;
- Максимально возможное содержание гликоля в смеси хладоносителя составляет 40% (для исполнений со встроенным насосом).

ПРЕИМУЩЕСТВА:

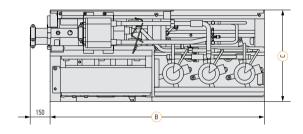
- Схема холодильного контура с водяным охлаждением конденсатора позволяет размещать чиллер внутри помещения.
- В большинстве случаев нет необходимости применения дополнительного бака-накопителя за счет увеличенного количества ступеней регулирования холодопроизводительности.
- Защита от замерзания испарителя при помощи установленного реле протока.
- Выбор режима эксплуатации: по температуре входящего или температуре выходящего хладоносителя.
- Стабильная работа компонентов холодильного контура во всех режимах эксплуатации, а также равномерная наработка компрессоров за счет специального разработанного алгоритма управления водоохлаждающей машиной.
- Пониженный уровень шума.
- Высокая эксплуатационная надежность.
- Комплектация резиновыми виброопорами.
- Поставляются комплектно с драйкулером.

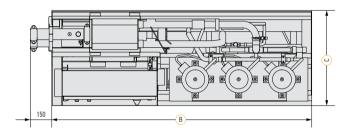
ОСОБЕННОСТИ КОНСТРУКЦИИ:


- Компактность конструкции возможность перемещения чиллеров через стандартные дверные проемы: ширина составляет всего 0,77 м, а максимальная высота – 1,8 м.
- Несущая рама из оцинкованной стали с порошковым полиэфирным покрытием. Удобный доступ к внутренним компонентам
- Спиральные трехфазные компрессоры с подогревом картера и встроенной защитой двигателя от перегрузки.
- Высокоэффективный испаритель и конденсатор:
 пластинчатый медно-паяный теплообменник
 из нержавеющей стали AISI 316, имеющий два независимых
 холодильных контура на стороне хладагента и один
 на стороне воды.
- Точность и стабильность работы за счет уникальной программы контроллера.
- Сухие контакты для управления чиллером и сигналов «авария» и «работа».
- Надежные быстросъемные герметичные соединения гидравлического контура.
- Дополнительная комплектация выносной панелью управления чиллером с возможностью дистанционного изменения его параметров и режимов работы. Полный доступ и отображение всех меню контроллера.
- Возможность подключения к системе диспетчеризации зданий BMS: Ethernet, BACnet/IP, LonWorks, RS 485 (Modbus).
- Два независимых водяных контура:
 - водяной контур испарителя
 - водяной контур конденсатора.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

-		0.15		0.55				400			450	450	400		
Типоразмер		045	050	055	065	080	090	100	115	130	150	170	190	220	250
Холодопроизводительность ¹	кВт	46	56	63	71	85	93	110	127	142	165	189	215	244	280
Теплопроизводительность	кВт	57	68	77	88	104	115	136	156	174	201	230	263	299	342
					КОМПР	ЕССОРЫ									
Количество	ШТ.	3	3	3	4	4	6	6	6	6	6	6	6	6	6
Потребляемая мощность	кВт	11,0	12,0	14,0	17,0	19,0	22,0	26,0	29,0	32,0	36,0	41	48	55	62
Максимальный рабочий ток	А	28,8	36,6	42,5	48,8	52,0	57,6	73,2	78,0	107,4	111,6	107,4	128,4	141,6	166,0
Максимальный пусковой ток	Α	101,0	111,0	126,0	123,0	139,0	130,0	148,0	165,0	215,0	218,0	215,0	254,0	276,0	335,0
Количество холодильных контуров	шт.	1	1	1	2	2	2	2	2	2	2	2	2	2	2
Количество ступеней производительности	ШТ.	3	3	3	4	4	5	5	5	5	5	5	5	5	5
Ступени производительности	%	0-33-66-	0-33-66-	0-33-66-	0-25-50-	0-25-50-	0-33-50-	0-33-50-	0-33-50-	0-33-50-	0-33-50-	0-33-50-	0-33-50-	0-33-50-	0-33-50-
				ЭЛЕКТРИ	ІЧЕСКИЕ	XAPAKT	ЕРИСТИІ	КИ							
		> ш	1			1			> ш	> ш	> ш	> ш	ΣШ	> ш	> ш
Питание	В/Гц/ фаз	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE	400/50/ 3+N+PE
Максимальный раблочий ток блока	Α	30,3	38,1	44,0	50,3	53,5	59,1	74,7	79,5	108,9	113,1	108,9	129,9	143,1	167,1
				водян	ой конт	УР ИСПА	\РИТЕЛЯ	l							
Расход воды	л/с	2,20	2,70	3,00	3,40	4,00	4,40	5,20	6,00	6,80	7,90	9,00	10,20	11,60	13,30
Минимальный расход воды	л/с	1,80	2,10	2,40	2,70	3,20	3,50	4,20	4,80	5,40	6,30	7,20	8,20	9,30	10,70
Потеря давления в пластинчатом теплообменнике	кПа	25,00	24,00	24,00	24,00	27,00	27,00	27,00	29,00	35,00	38,00	47,00	42,00	43,00	44,00
Минимальный объем системы для работы без аккумулирующего бака	M ³	0,20	0,22	0,22	0,22	0,25	0,20	0,22	0,22	0,24	0,28	0,30	0,35	0,39	0,44
				DO E GUO	ığ uau t ı	(D.1/011E									
Расход пропиленгликоля (40%)	л/с	3,20	3.8	водяно 4,3	4,9	7Р КОНД 5,8	6,4	7,6	8,7	9,7	11,3	12,9	14,7	16,7	19,1
Потеря давления в пластинчатом			· ·		· ·					· ·					
теплообменнике	кПа	33,0	40,0	39,0	40,0	42,0	42,0	56,0	60,0	70,0	48,0	48,0	50,0	53,0	56,0
Минимальный объем системы для работы без аккумулирующего бака	M ³	0,19	0,21	0,21	0,21	0,24	0,19	0,21	0,24	0,26	0,30	0,33	0,38	0,43	0,48
				АКУСТИ	HEUKNE .	ΧΝΡΝΚΤΕ	DUCTUR	'U							
Уровень звукового давления ²	дБ(А)	57	57	57	57	58	58	59	59	60	60	60	60	61	62
2 Passille and Monor of Manufallian	ADVV	,					- 55				00		- 55		
	ПРИСОЕДИ	1НИТЕЛЬ	ные па	ГРУБКИ І	водяны	х конту	РОВ ИСГ	ІАРИТЕЛ	ІЯ И КОН	ДЕНСАТ	OPA ³				
Диаметр условного прохода (Ду)	ММ	50	50	50	50	65	65	65	65	65	65	80	80	80	80
Присоединение грувлочное по ГОСТ Р 51737-20013	дюйм	2	2	2	2	2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	3	3	3	3


¹ Температура воды в испарителе +12/7°С, температура воды в конденсаторе +30/35°С
² Уровень звукового давления измерен в свободном звуковом поле на расстоянии 1 м от агрегата и 1,5 м от опорной поверхности согласно DIN 45 635
³ Варианты возможных подсоединений вводных труб гидравлического контура чиллера:
— грувлочное по ГОСТ Р 51 737-2001 (стандартное исполнение в обозначении не маркируется);
— коническая трубная резьба по ГОСТ 6211–81/ISO R7/DIN 2999
— цилиндрическая трубная резьба по ГОСТ 6357–81/ISO R228/DIN 259;
— фланцевое по ГОСТ 12815–80.


Типоразмеры 045-130

Типоразмеры 150-250

ГАБАРИТЫ И МАССА

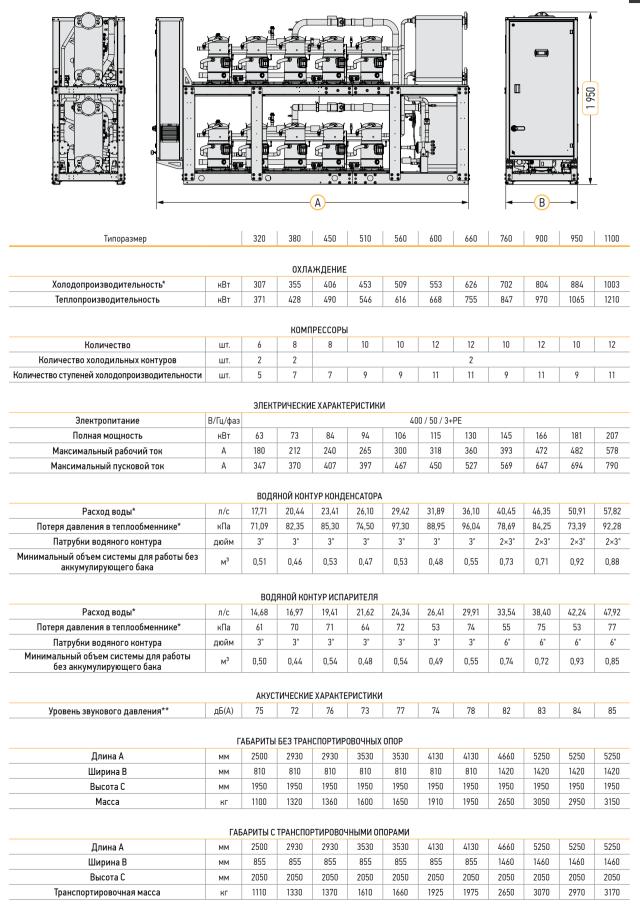
Типоразмер		045	050	055	065	080	090	100	115	130	150	170	190	220	250
Длина (А)	ММ	1400	1400	1400	1400	1400	1800	1800	1800	1800	1800	1800	2200	2200	2200
Ширина (В)	ММ	770	770	770	770	770	770	770	770	770	770	770	770	770	770
Высота (С)	ММ	1780	1780	1780	1780	1780	1880	1880	1880	1880	1880	1880	1880	1880	1880
Macca	кг	530	540	550	560	600	780	790	810	830	1000	1020	1243	1323	1410

ЧИЛЛЕР С ВОДЯНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА ТВН

Чиллеры ТВН предназначены для подготовки жидкого хладоносителя, подаваемого в секцию водяного охладителя центрального кондиционера.

- Хладагент: фреон R410A;
- Тип чиллера: только охлаждение;
- Холодопроизводительность: от 307 до 1003 кВт;
- Предназначены для установки в помещении с температурой окружающего воздуха от 15 до 40°С, диапазон температур теплоносителя (воды) на выходе из конденсатора +18... +51°С, диапазон температур теплоносителя (воды) на входе в конденсатор +13... + 48°С;
- Коэффициент энергоэффективности: EER 4,8;
- Максимально возможное содержание гликоля в смеси хладоносителя составляет 40% (для исполнений со встроенным насосом).

ПРЕИМУЩЕСТВА


- Схема холодильного контура с водяным охлаждением конденсатора позволяет размещать чиллер внутри помещения.
- Отсутствие необходимости применения дополнительного бака-накопителя за счет увеличенного количества ступеней регулирования холодопроизводительности.
- Уменьшенные габариты чиллера и сниженное количество хладагента за счет применения высокоэффективных меднопаяных теплообменников конденсатора.
- Высокий холодильный коэффициент и минимальное энергопотребление на частичных нагрузках.
- Стабильная работа компонентов холодильного контура во всех режимах эксплуатации, а также равномерная наработка компрессоров за счет специально разработанного алгоритма управления водоохлаждающей машиной.
- Дополнительная комплектация выносной панелью управления с возможностью дистанционного изменения параметров и режимов работы. Полный доступ и отображение всех разделов настроек контроллера.
- Поставляются комплектно с драйкулером.
- Высокая эксплуатационная надежность.
- Экономия электроэнергии.
- Бесперебойная работа.
- Низкий уровень шума и вибрации.
- Эстетичный внешний вид.
- Тестирование всех параметров работы чиллера на высокоточном заводском стенде.
- Возможность подключения к системе диспетчеризации зданий.
- Поставляются заправленные хладагентом.

особенности конструкции:

- Спиральные трехфазные компрессоры со встроенной защитой от перегрузки и подогревом картера.
- Пластинчатый медно-паяный испаритель и конденсатор из нержавеющей стали с двумя независимыми холодильными контурами на стороне хладагента и одним на стороне воды.
- Несущая рама из оцинкованной стали с порошковым полиэфирным покрытием. Удобный доступ к внутренним компонентам.

опции:

- ZV запорные клапаны холодильных контуров
- АК шумоглушащие кожухи компрессоров
- 2W двухходовой вентиль регулирования давления конденсации
- 3W трехходовой вентиль регулирования давления конденсации
- MN манометры высокого и низкого давления фреоновых контуров
- RS1 выносной дисплей до 100 м
- RS2 выносной дисплей до 500 м
- RI оптоизолированный интерфейс RS-485
- RA резиновые виброизоляторы
- SA пружинные виброизоляторы
- FS реле протока
- FSC реле протока конденсатора
- ТWC датчик температуры воды/теплоносителя конденсатора

^{* —} расчетные условия: температура воды входящей испарителя +12°С, выходящей +7°С, температура воды входящей конденсатора +30°С, выходящей +35°С.

^{** —} уровень звукового давления измерен в свободном звуковом поле на расстоянии 1 м от чиллера (со стороны всасывания) и 1,5 м от опорной поверхности согласно DIN 45635.

ВЕНТИЛЯТОР VL

Вентиляторы VL используются для перемещения воздуха и неагрессивных газовых смесей в системах приточновытяжной общеобменной вентиляции с прямоугольным сечением воздуховодов. Монтируются в любом положении.

- Корпус из оцинкованной стали, оборудованный съемной сервисной панелью и кабельным вводом;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Повышенная производительность благодаря конструкции на базе свободного рабочего колеса (без спирального корпуса);
- Низкое энергопотребление за счет рабочего колеса с назад загнутыми лопатками, установленного на валу электродвигателя;
- Высокая эксплуатационная надежность благодаря встроенной защите электродвигателя от перегрева;
- Температура перемещаемого воздуха от-40°С до +40°С.

ТИПОРАЗМЕРЫ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Обозначение	Макс. расход воздуха, м³/ч***	Макс. статич. давление, Па***	Макс. скорость вращения, об/мин	Напряжение питания двигателя, В	Мощность двигателя, кВт	Макс. рабочий ток, А	Щит управления вентилятором при подключении напрямую	Щит управления вентилятором при подключении через рекомендуемый регулятор скорости	Рекомендуемый регулятор скорости
VL 40-20/18.2D	680	320	2710	3~380 / 3~220*	0,25	0,71 / 1,24*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VL 50-25/20.2D	1150	410	2710	3~380 / 3~220*	0,25	0,71 / 1,24*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VL 50-25/22.2D	1600	530	2740	3~380 / 3~220*	0,55	1,30 / 2,30*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VL 50-30/22.2D	1680	540	2740	3~380 / 3~220*	0,55	1,30 / 2,30*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VL 50-30/25.2D	2300	630	2730	3~380 / 3~220*	0,75	1,83 / 3,20*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VL 60-30/25.2D	2350	640	2730	3~380 / 3~220*	0,75	1,83 / 3,20*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VL 60-30/28.2D	3400	780	2770	3~380 / 3~220*	1,10	2,50 / 4,3*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0150A7
VL 60-35/28.2D	3400	800	2770	3~380 / 3~220*	1,10	2,50 / 4,3*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0150A7
VL 60-35/31.2D	4700	1060	2800	3~380 / 3~220*	1,50	3,32 / 5,78*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0150A7
VL 70-40/31.2DM	4800	1060	2800	3~380 / 3~220*	1,50	3,32 / 5,78*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0150A7
VL 70-40/31.2D**	4800 (5700)**	1060 (1500)**	2840 (3300)**	3~380	2,20	4,6	UM-V5-TK3	UM-V-3R2,2	GS51-T4-0220A5
VL 70-40/35.2D	6800	1350	2840	3~380	3,00	6,0	UM-V5-TK3	UM-V-3R5	GS51-T4-0300A7
VL 80-50/35.2D	7400	1350	2840	3~380	3,00	6,0	UM-V5-TK3	UM-V-3R5	GS51-T4-0300A7
VL 80-50/40.4D**	4600 (8400)**	450 (1400)**	1420 (2490)**	3~380	3,00	4,6	UM-V5-TK3	UM-V-3R5	GS51-T4-0300A7
VL 90-50/35.2D	7500	1350	2840	3~380	3,00	6,0	UM-V5-TK3	UM-V-3R5	GS51-T4-0300A7
VL 90-50/40.2D	9800	1680	2880	3~380	5,50	10,7	UM-V7,5-TK3-PPD	UM-V-3R11	GS51-T4-0550A13
VL 90-50/40.4D**	4600 (8300)**	450 (1400)**	1420 (2510)**	3~380	3,00	6,4	UM-V5-TK3	UM-V-3R5	GS51-T4-0300A7
VL 100-50/40.2D	9800	1680	2880	3~380	5,50	10,7	UM-V7,5-TK3-PPD	UM-V-3R11	GS51-T4-0550A13
VL 100-50/45.4D**	7500 (11500)**	500 (1400)**	1430 (2230)**	3~380	4,00	8,4	UM-V5-TK3	UM-V-3R5	GS51-T4-0400A9

^{*} питание и ток двигателя при подключении через рекомендуемый регулятор скорости (отмечено, если питание и ток отличаются от подключения напрямую)

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

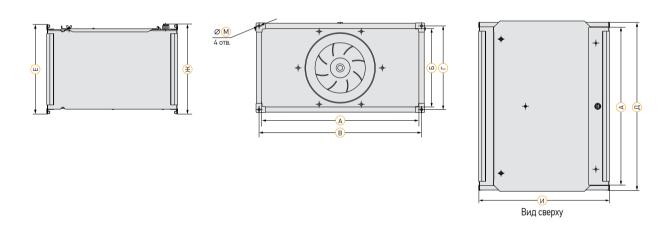
Гибкая вставка MV

Шумоглушитель GHP

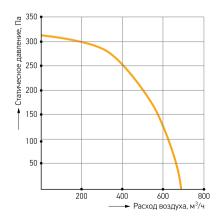
Щит управления вентилятором UM-V

Щит управления вентилятором UM-V-R

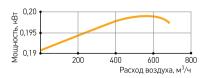
Регулятор оборотов частотный GS51

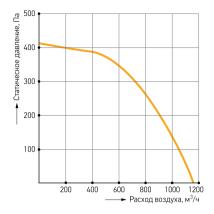

Датчик перепада давления DPD

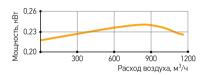
^{**} при «разгоне» двигателя частотным регулятором скорости (если отсутствует, регулирование возможно только «вниз»)

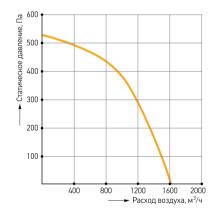

^{***} максимальный расход приведен для минимального рабочего давления, максимальное давление указано при минимальном расходе

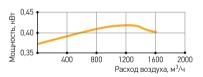
РАЗМЕРЫ И МАССА

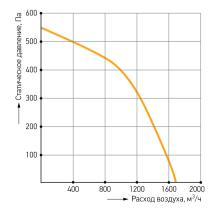

T	Обозначение					Размеры, мм					M
Типоразмер	Ооозначение	А	Б	В	Γ	Д	E	Ж	И	М	Масса, кг
40-20	VL 40-20/18.2D	400	200	420	220	440	240	243	358	9	15
50-25	VL 50-25/20.2D	500	250	520	270	540	290	293	416	9	18
30-23	VL 50-25/22.2D	500	250	520	270	340	290	293	410	9	20
FO 20	VL 50-30/22.2D	500	300	520	320	540	340	343	458	9	26
50-30	VL 50-30/25.2D	500	300	520	320	340	340	343	438	9	28
60-30	VL 60-30/25.2D	/00	300	620	320	//0	340	343	498	9	31
00-30	VL 60-30/28.2D	600	300	020	320	640	340	343	478	9	37
60-35	VL 60-35/28.2D	600	350	620	370	640	390	393	498	9	39
60-33	VL 60-35/31.2D	600	350	620	3/0	040	370	373	478	9	40
	VL 70-40/31.2DM										47
70-40	VL 70-40/31.2D	700	400	720	420	740	440	443	600	9	51
	VL 70-40/35.2D										53
80-50	VL 80-50/35.2D	000	500	820	520	840	540	543	635	0	61
00-30	VL 80-50/40.4D	800	500	820	320	840	340	343	633	9	70
	VL 90-50/35.2D										66
90-50	VL 90-50/40.2D	900	500	930	530	960	560	553	650	11	75
	VL 90-50/40.4D										78
100-50	VL 100-50/40.2D	1000	Enn	1020	E20	10/0	E/0	EEO	670	11	86
100-30	VL 100-50/45.4D	1000	500	1030	530	1060	560	553	6/0	11	87

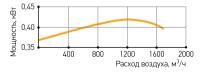

VL 40-20/18-2D

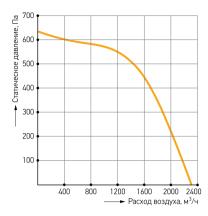

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ ((A)	
	L сум, дБ (A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	66,0	38,9	50,5	55,0	62,4	59,9	58,1	52,6	46,7
Шум на нагнетании	68,9	41,8	53,4	57,9	65,3	62,8	61,0	55,5	49,6
Шум к окружению	60,2	32,3	44,9	52,4	55,3	54,9	51,0	48,5	41,6

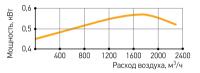

VL 50-25/20-2D

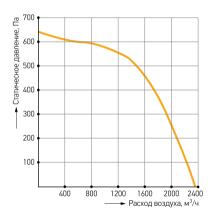

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	68,2	40,8	52,9	57,3	64,8	61,8	59,9	54,9	48,9
Шум на нагнетании	71,1	43,7	55,8	60,2	67,7	64,7	62,8	57,8	51,8
Шум к окружению	62,4	34,1	47,3	54,7	57,7	56,7	52,8	50,8	43,8

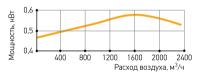

VL 50-25/22-2D

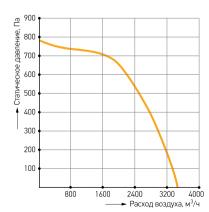

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	74,3	45,4	57,3	61,3	68,7	66,6	68,8	66,4	61,5
Шум на нагнетании	77,5	48,6	60,5	64,5	71,9	69,8	72,0	69,6	64,7
Шум к окружению	68,9	39,1	52,0	59,0	61,9	61,8	62,0	62,6	56,7

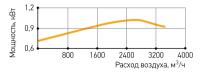

VL 50-30/22-2D

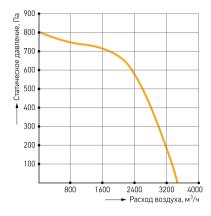

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	72,1	43,4	55,4	58,7	66,3	64,4	66,5	64,1	59,4
Шум на нагнетании	75,1	46,4	58,4	61,7	69,3	67,4	69,5	67,1	62,4
Шум к окружению	66,5	36,9	49,9	56,2	59,3	59,3	59,5	60,1	54,4

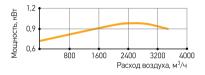

VL 50-30/25-2D

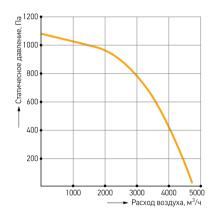

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	76,4	43,1	54,7	63,3	67,4	71,6	71,6	67,4	61,9
Шум на нагнетании	79,3	46,0	57,6	66,2	70,3	74,5	74,5	70,3	64,8
Шум к окружению	69,9	36,5	48,1	59,7	59,3	65,5	63,5	62,3	55,8

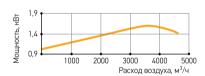

VL 60-30/25-2D

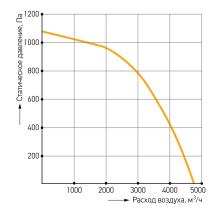

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	75,8	42,3	54,2	62,5	66,9	71,1	71,0	66,8	61,1
Шум на нагнетании	78,8	45,3	57,2	65,5	69,9	74,1	74,0	69,8	64,1
Шум к окружению	69,4	35,8	47,7	59,0	58,9	65,1	63,0	61,8	55,1

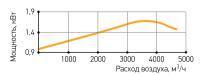

VL 60-30/28-2D

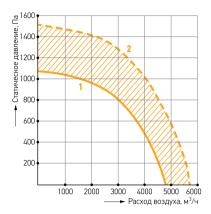

Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	80,5	49,5	61,5	70,0	72,6	74,6	76,0	70,5	66,7
Шум на нагнетании	83,6	52,6	64,6	73,1	75,7	77,7	79,1	73,6	69,8
Шум к окружению	73,2	43,1	54,1	65,6	63,7	67,7	67,1	64,6	59,8


VL 60-35/28-2D


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
Шилла рессирения	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	79,8	48,6	60,5	69,3	71,8	74,0	74,9	69,7	65,6
Шум на нагнетании	82,9	51,7	63,6	72,4	74,9	77,1	78,0	72,8	68,7
Шум к окружению	72,5	42,2	53,1	64,9	62,9	67,1	66,0	63,8	58,7


VL 60-35/31-2D


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
III.	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	83,7	54,4	65,2	70,6	76,2	77,3	79,7	73,0	69,4
Шум на нагнетании	86,7	57,4	68,2	73,6	79,2	80,3	82,7	76,0	72,4
Шум к окружению	75,9	47,9	57,7	66,1	67,2	70,3	70,7	67,0	62,4

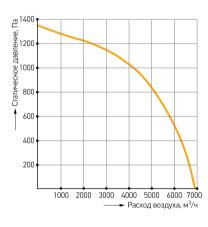

VL 70-40/31-2DM

Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	82,3	53,0	63,9	69,2	74,7	76,0	78,3	71,7	68,0
Шум на нагнетании	85,3	56,0	66,9	72,2	77,7	79,0	81,3	74,7	71,0
Шум к окружению	74,6	46,5	56,4	64,7	65,7	69,0	69,3	65,7	61,0

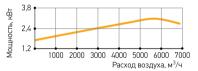
VL 70-40/31-2D

Характеристика 1

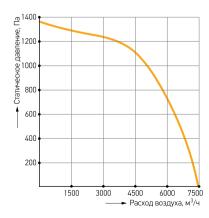
Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	83,4	53,5	65,0	70,3	75,8	77,1	79,4	72,7	68,9
Шум на нагнетании	86,5	56,6	68,1	73,4	78,9	80,2	82,5	75,8	72,0
Шум к окружению	75,8	47,1	57,6	65,9	66,9	70,2	70,5	66,8	62,0

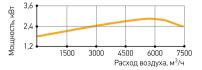

Характеристика 2

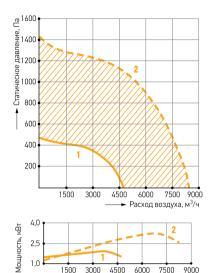
Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)			
	L сум, дБ(A)	63	63 125 250 500 1000 2000 400								
Шум на всасывании	88,6	58,7	70,2	75,5	81,0	82,3	84,6	77,9	74,1		
Шум на нагнетании	91,7	61,8	73,3	78,6	84,1	85,4	87,7	81,0	77,2		
Шум к окружению	81,0	52,3	62,8	71,1	72,1	75,4	75,7	72,0	67,2		


1 — характеристика на номинальных оборотах без использования частотного регулятора (n nom=2840 мин-1);

2 — характеристика на максимальных оборотах при использовании частотного регулятора (n max=3420 мин-1); заштрихованная область — область характеристик при использовании частотного регулятора (n nom < n < n max).


VL 70-40/35-2D


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	89,4	58,5	66,7	74,0	80,8	81,8	86,2	80,7	74,7
Шум на нагнетании	92,5	61,6	69,8	77,1	83,9	84,9	89,3	83,8	77,8
Шум к окружению	80,7	52,1	58,3	68,6	70,9	73,9	76,3	73,8	66,8


VL 80-50/35-2D

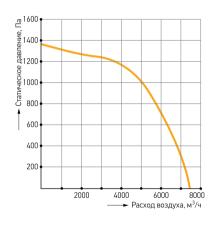
Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)			
	L сум, дБ(A)	63	63 125 250 500 1000 2000 400								
Шум на всасывании	88,7	57,6	65,7	73,4	80,1	81,5	85,4	79,8	73,9		
Шум на нагнетании	91,7	60,6	68,7	76,4	83,1	84,5	88,4	82,8	76,9		
Шум к окружению	79,9	51,1	57,2	67,9	70,1	73,5	75,4	72,8	65,9		

VL 80-50/40-4D

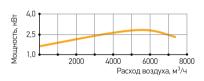
1500 3000 4500 6000 7500 9000

Характеристика 1

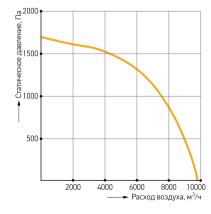
Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	75,7	51,0	53,0	62,9	66,8	71,9	69,1	66,8	60,4
Шум на нагнетании	78,8	54,1	56,1	66,0	69,9	75,0	72,2	69,9	63,5
Шум к окружению	67,6	44,2	44,6	57,7	56,9	64,1	59,2	60,0	52,6

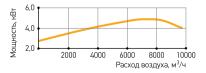

Характеристика 2

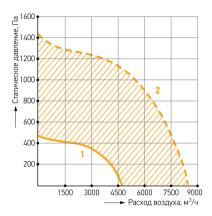
Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	90,2	65,5	67,5	77,4	81,3	86,4	83,6	81,3	74,9
Шум на нагнетании	93,3	68,6	70,6	80,5	84,4	89,5	86,7	84,4	78,0
Шум к окружению	82,1	58,7	59,1	72,2	71,4	78,6	73,7	74,5	67,1

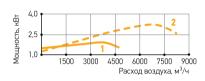

1 – характеристика на номинальных оборотах без использования частотного регулятора (n nom=1410 мин-1); 2 – характеристика на максимальных оборотах при использовании частотного регулятора (n max=2489 мин-1); заштрихованная область – область характеристик при использовании частотного регулятора (n nom < n < n max).

VL 90-50/35-2D


1,0


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)			
	L сум, дБ(A)	63	63 125 250 500 1000 2000 4000								
Шум на всасывании	86,6	60,8	62,7	73,2	76,5	82,0	82,2	76,4	71,8		
Шум на нагнетании	89,7	63,9	65,8	76,3	79,6	85,1	85,3	79,5	74,9		
Шум к окружению	77,1	54,3	53,2	66,7	65,5	73,0	71,1	68,4	62,8		

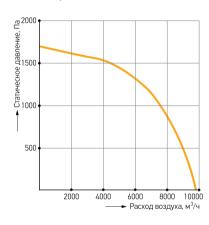

VL 90-50/40-2D



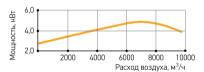
Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	A) 63 125 250 500 1000 2000 4							
Шум на всасывании	90,6	66,4	68,3	78,0	81,6	86,9	83,9	81,3	75,6
Шум на нагнетании	93,6	69,4	71,3	81,0	84,6	89,9	86,9	84,3	78,6
Шум к окружению	80,2	59,8	57,7	70,4	69,5	76,8	71,8	72,2	65,5

VL 90-50/40-4D

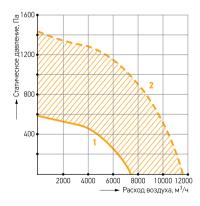
Характеристика 1

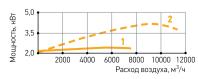

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	76,1	51,5	53,4	63,3	66,9	72,5	69,4	67,1	60,6
Шум на нагнетании	79,1	54,5	56,4	66,3	69,9	75,5	72,4	70,1	63,6
Шум к окружению	67,9	44,6	44,9	58,0	56,9	64,6	59,4	60,2	52,7

Характеристика 2


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	90,4	65,8	67,7	77,6	81,2	86,8	83,7	81,4	74,9
Шум на нагнетании	93,4	68,8	70,7	80,6	84,2	89,8	86,7	84,4	77,9
Шум к окружению	82,2	58,9	59,2	72,3	71,2	78,9	73,7	74,5	67,0

1 – характеристика на номинальных оборотах без использования частотного регулятора (n nom=1410 мин-1); 2 – характеристика на максимальных оборотах при использовании частотного регулятора (n max=2489 мин-1); заштрихованная область — область характеристик при использовании частотного регулятора (n nom < n < n max).


VL 100-50/40-2D



Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	90,4	66,4	68,6	78,0	81,4	86,7	83,9	81,4	75,3
Шум на нагнетании	93,4	69,4	71,6	81,0	84,4	89,7	86,9	84,4	78,3
Шум к окружению	82,2	73,1	71,3	83,7	82,6	89,9	85,1	85,6	78,5

VL 100-50/45-4D

Характеристика 1

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	80,4	23,3	41,4	60,6	68,4	76,1	76,2	72,0	65,4
Шум на нагнетании	83,5	26,4	44,5	63,7	71,5	79,2	79,3	75,1	68,5
Шум к окружению	71,1	16,5	32,2	54,5	57,6	67,4	65,4	64,3	56,6

Характеристика 2

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)			
	L сум, дБ(A)	63	63 125 250 500 1000 2000 4000								
Шум на всасывании	92,0	34,9	53,0	72,2	80,0	87,7	87,8	83,6	77,0		
Шум на нагнетании	95,1	38,0	56,1	75,3	83,1	90,8	90,9	86,7	80,1		
Шум к окружению	82,7	28,1	43,8	66,1	69,2	79,0	77,0	75,9	68,2		

1 – характеристика на номинальных оборотах без использования частотного регулятора (n nom=1435 мин-1);

2 — характеристика на максимальных оборотах при использовании частотного регулятора (n max=2229 мин-1); заштрихованная область — область характеристик при использовании частотного регулятора (n nom < n < n max).

ВЕНТИЛЯТОР VP

- Корпус из оцинкованной стали, оборудованный съемной сервисной панелью с установленным на неё мотор-колесом;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Рабочее колесо из оцинкованной стали с вперед загнутыми лопатками (VP 100-50/63.4D – с назад загнутыми лопатками);
- Асинхронный электродвигатель с внешним ротором и встроенной защитой от перегрева (биметаллические термоконтакты). Корпус из алюминия. Степень защиты IP54. Обмотка оснащена дополнительной защитой от влаги. Класс нагревостойкости изоляции F;
- Температура перемещаемого воздуха от -40°C до +40°C.

Вентиляторы VP используются для перемещения воздуха и неагрессивных газовых смесей в системах приточно-вытяжной общеобменной вентиляции с прямоугольным сечением воздуховодов. Монтируются в любом положении.

Обозначение	Макс. расход воздуха, м³/ч**	Макс. статич. давление, Па**	Макс. скорость вращения, об/мин	Напряжение питания двигателя, В	Мощность двигателя, кВт	Макс. рабочий ток, А	Щит управления вентилятором при подключении напрямую	Щит управления вентилятором при подключении через рекомендуемый регулятор скорости	Рекомендуемый регулятор скорости
VP 40-20/20.4E	1172	214	1410	1~220	0,33	1,80	UM-V1,2-TK1	UM-V1,2-TK1	ARW 3,0/1
VP 40-20/20.4D	1180	230	1390	3~380 / 3~220*	0,33	0,63 / 1,09*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VP 50-25/22.6D	1331	141	952	3~380 / 3~220*	0,30	0,80 / 1,39*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VP 50-25/22.4E	1596	279	1418	1~220	0,51	2,30	UM-V1,2-TK1	UM-V1,2-TK1	ARW 3,0/1
VP 50-25/22.4D	1781	292	1428	3~380 / 3~220*	0,51	1,10 / 1,91*	UM-V5-TK3	UM-V-1R2,2	GS51-T4-0220A5
VP 50-30/25.6D	1811	179	930	3~380 / 3~220*	0,36	0,92 / 1,60*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VP 50-30/25.4E	2302	376	1390	1~220	1,00	4,60	UM-V1,2-TK1	UM-V1,2-TK1	ARW 7,0
VP 50-30/25.4D	2570	391	1461	3~380 / 3~220*	0,94	2,20 / 3,80 *	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VP 60-30/28.6D	2330	226	955	3~380 / 3~220*	0,58	1,58 / 2,74*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VP 60-30/28.4E	2515	415	1370	1~220	1,25	5,60	UM-V1,2-TK1	UM-V1,2-TK1	ARW 7,0
VP 60-30/28.4D	3562	495	1415	3~380 / 3~220*	1,70	3,20 / 5,54*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0150A7
VP 60-35/31.6D	3549	269	930	3~380 / 3~220*	0,80	1,50 / 2,60*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VP 60-35/31.4D	4510	632	1415	3~380	2,20	4,00	UM-V5-TK3	UM-V-3R2,2	GS51-T4-0220A5
VP 70-40/35.8D	3672	213	670	3~380 / 3~220*	0,65	1,40 / 2,30*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VP 70-40/35.6D	4040	380	925	3~380 / 3~220*	0,95	1,90 / 3,30*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VP 70-40/35.4D	5470	760	1422	3~380	3,50	5,90	UM-V5-TK3	UM-V5-TK3	GS51-T4-0300A7
VP 80-50/40.8D	5330	294	701	3~380 / 3~220*	1,70	3,70 / 6,41*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0150A7
VP 80-50/40.6D	7360	501	945	3~380	2,80	5,00	UM-V5-TK3	UM-V-3R2,2	GS51-T4-0220A5
VP 80-50/40.4D	6250	967	1415	3~380	4,70	7,60	UM-V5-TK3	UM-V-3R5	GS51-T4-0400A9
VP 90-50/45.8D	6600	368	690	3~380	2,00	4,10	UM-V5-TK3	UM-V-3R2,2	GS51-T4-0220A5
VP 90-50/45.6D	8033	633	930	3~380	3,70	6,50	UM-V5-TK3	UM-V-3R5	GS51-T4-0300A7
VP 90-50/45.4D	6558	1544	1265	3~380	4,92	8,30	UM-V5-TK3	UM-V-3R5	GS51-T4-0400A9
VP 100-50/63.4D	14000	1100	1320	3~380	4,10	6,80	UM-V5-TK3	UM-V-3R5	GS51-T4-0400A9

^{*} питание и ток двигателя при подключении через рекомендуемый регулятор скорости (отмечено, если питание и ток отличаются от подключения напрямую)
** максимальный расход приведен для минимального рабочего давления, максимальное давление указано при минимальном расходе

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

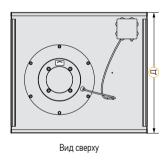
Гибкая вставка M۷

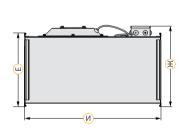
Шумоглушитель GHP

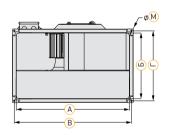
Щит управления вентилятором UM-V

Щит управления вентилятором UM-V-R

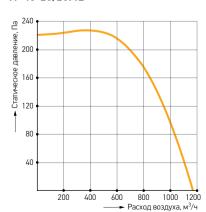
Регулятор оборотов частотный GS51

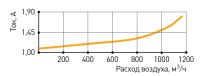

Регулятор частоты вращения вентилятора ARW



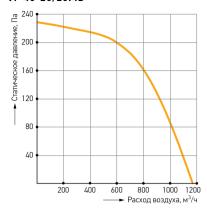

Датчик перепада давления DPD

РАЗМЕРЫ И МАССА


Типоразмер	Обозначение					Размеры, мм	1				Масса, кг
типоразмер	Ооозначение	Α	Б	В	Г	Д	E	Ж	И	М	Масса, кі
/0.00	VP 40-20/20.4E	400	200	420	220	//0	240	281	F00	9	16
40-20	VP 40-20/20.4D	400	200	420	220	440	240	281	500	9	15
	VP 50-25/22.6D										18
50-25	VP 50-25/22.4E	500	250	520	270	540	290	331	530	9	19
	VP 50-25/22.4D										19
	VP 50-30/25.6D										22
50-30	VP 50-30/25.4E	500	300	520	320	540	340	381	565	9	25
	VP 50-30/25.4D										24
	VP 60-30/28.6D										30
60-30	VP 60-30/28.4E	600	300	620	320	640	340	381	642	9	38
	VP 60-30/28.4D										38
/0.0F	VP 60-35/31.6D	600	350	620	370	640	390	431	720	9	40
60-35	VP 60-35/31.4D	600	330	620	370	040	390	431	/20	9	46
	VP 70-40/35.8D										50
70-40	VP 70-40/35.6D	700	400	720	420	740	440	481	780	9	50
	VP 70-40/35.4D										64
	VP 80-50/40.8D										64
80-50	VP 80-50/40.6D	800	500	820	520	840	540	581	885	9	78
	VP 80-50/40.4D										84
	VP 90-50/45.8D										90
90-50	VP 90-50/45.6D	900	500	930	530	960	560	591	985	11	96
	VP 90-50/45.4D										96
100-50	VP 100-50/63.4D	1000	500	1030	530	1060	560	686	1210	11	145

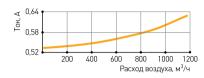


VP 40-20/20.4E

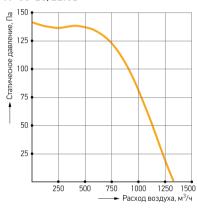


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ ((A)	
	L сум, дБ(A)	. сум, дБ(А) 63 125 250 500 1000							
Шум на всасывании	67,2	31,3	48,9	55,9	59,5	61,5	61,1	60,1	54,3
Шум на нагнетании	73,6	37,7	55,3	62,3	65,9	67,9	67,5	66,5	60,7
Шум к окружению	61,8	38,1	49,9	53,8	52,5	55,3	55,2	54,0	49,7

Расход воздуха=600 м³/ч.

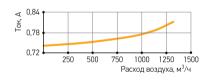


VP 40-20/20.4D



Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	. сум, дБ(А) 63 125 250 500 1000 2							
Шум на всасывании	64,8	31,0	46,9	55,1	56,8	59,2	58,4	56,5	52,1
Шум на нагнетании	70,5	36,7	52,6	60,8	62,5	64,9	64,1	62,2	57,8
Шум к окружению	57,9	36,6	47,2	48,8	49,7	51,4	50,7	49,5	46,3

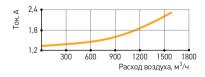
Расход воздуха=600 м³/ч.



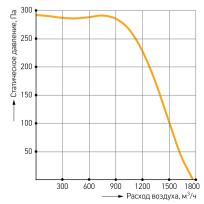
VP 50-25/22.6D

Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	59,5	26,0	41,1	49,6	53,0	54,6	52,4	50,2	41,1
Шум на нагнетании	61,7	28,2	43,3	51,8	55,2	56,8	54,6	52,4	43,3
Шум к окружению	49,9	27,9	39,5	43,6	43,1	42,8	41,7	38,9	35,7

Расход воздуха=700 м³/ч.

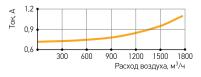


VP 50-25/22.4E

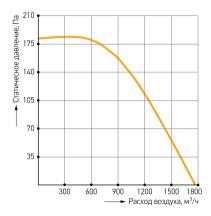


Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	4000	8000					
Шум на всасывании	69,8	39,3	55,4	60,4	61,8	63,5	64,3	61,5	55,4
Шум на нагнетании	73,5	43,0	59,1	64,1	65,5	67,2	68,0	65,2	59,1
Шум к окружению	62,0	40,5	55,5	57,4	51,5	53,0	52,8	49,9	45,2

Расход воздуха=960 м³/ч.

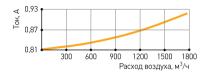


VP 50-25/22.4D

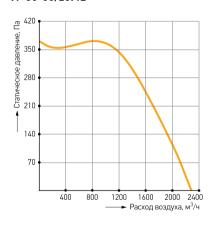


Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	4000	8000					
Шум на всасывании	69,8	39,3	55,4	60,4	61,8	63,5	64,3	61,5	55,4
Шум на нагнетании	73,5	43,0	59,1	64,1	65,5	67,2	68,0	65,2	59,1
Шум к окружению	62,0	40,5	55,5	57,4	51,5	53,0	52,8	49,9	45,2

Расход воздуха=960 м³/ч.

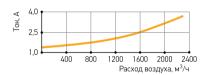


VP 50-30/25.6D

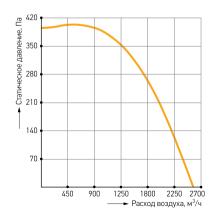


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	63,8	32,5	49,2	51,6	57,0	57,7	58,0	55,7	47,6
Шум на нагнетании	68,7	37,4	54,1	56,5	61,9	62,6	62,9	60,6	52,5
Шум к окружению	56,8	36,9	46,9	47,9	48,6	50,0	49,7	47,9	44,2

Расход воздуха=840 м³/ч.

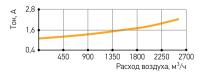


VP 50-30/25.4E

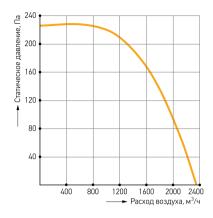


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63 125 250 500 1000 2000 4000							
Шум на всасывании	74,2	39,2	59,4	61,8	65,8	69,4	67,4	67,4	58,7
Шум на нагнетании	78,6	43,6	63,8	66,2	70,2	73,8	71,8	71,8	63,1
Шум к окружению	65,3	41,3	58,2	60,8	55,5	56,3	55,8	54,1	50,4

Расход воздуха=1200 м³/ч.

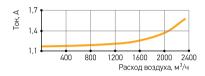


VP 50-30/25.4D

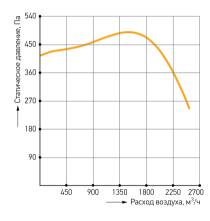


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	76,4	40,3	59,4	61,4	67,5	71,7	70,3	69,5	61,8
Шум на нагнетании	82,0	45,9	65,0	67,0	73,1	77,3	75,9	75,1	67,4
Шум к окружению	65,4	45,2	57,1	57,9	58,3	58,3	57,6	55,1	49,9

Расход воздуха=1350 м³/ч.

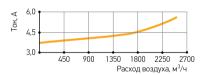


VP 60-30/28.6D

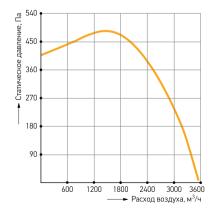


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	64,7	34,9	50,5	52,5	58,4	59,5	57,3	57,1	47,0
Шум на нагнетании	70,0	40,2	55,8	57,8	63,7	64,8	62,6	62,4	52,3
Шум к окружению	58,6	37,6	48,5	51,2	53,8	51,5	49,8	45,5	39,4

Расход воздуха=1040 м³/ч.

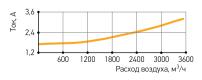


VP 60-30/28.4E

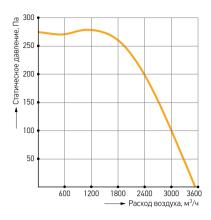


Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	75,0	40,9	61,5	61,5	66,9	70,1	68,5	67,6	60,0
Шум на нагнетании	80,3	46,2	66,8	66,8	72,2	75,4	73,8	72,9	65,3
Шум к окружению	62,7	47,2	58,6	54,5	53,4	54,1	51,9	51,3	45,6

Расход воздуха=1620 м³/ч.

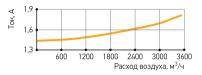


VP 60-30/28.4D

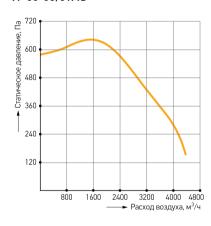


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	77,1	45,7	61,8	66,8	68,2	71,9	70,1	69,9	63,8
Шум на нагнетании	82,8	51,4	67,5	72,5	73,9	77,6	75,8	75,6	69,5
Шум к окружению	66,4	46,6	60,5	56,7	56,7	59,6	58,8	56,1	51,7

Расход воздуха=1800 м³/ч.

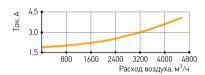


VP 60-35/31.6D

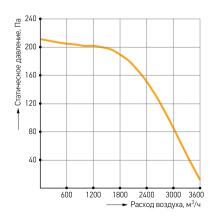


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	69,6	37,2	56,8	56,6	63,7	63,9	62,6	61,5	53,8
Шум на нагнетании	73,2	40,8	60,4	60,2	67,3	67,5	66,2	65,1	57,4
Шум к окружению	58,7	41,7	51,6	50,1	51,4	51,4	50,3	48,7	44,6

Расход воздуха=2040 м³/ч.

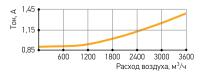


VP 60-35/31.4D

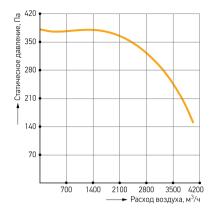


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	78,5	43,1	63,2	69,2	69,1	73,3	71,6	71,3	65,2
Шум на нагнетании	83,2	47,8	67,9	73,9	73,8	78,0	76,3	76,0	69,9
Шум к окружению	70,4	50,6	64,5	60,9	60,8	63,7	62,9	60,3	55,9

Расход воздуха=2240 м³/ч.



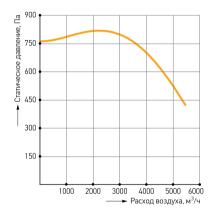
VP 70-40/35.8D



Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	тот L _i , дБ (A)	
	L сум, дБ(A)	A) 63 125 250 500 1000 2000 4000						8000	
Шум на всасывании	63,2	36,2	50,8	53,3	57,2	56,9	55,8	55,4	44,8
Шум на нагнетании	69,8	42,8	57,4	59,9	63,8	63,5	62,4	62,0	51,4
Шум к окружению	57,0	41,9	49,7	53,6	46,7	47,7	45,3	42,5	36,4

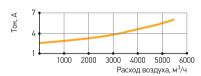
Расход воздуха=1800 м³/ч.

VP 70-40/35.6D

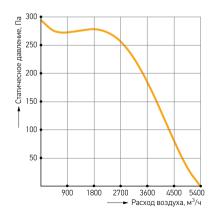


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	71,1	45,0	59,7	60,1	65,0	65,7	63,4	62,2	53,1
Шум на нагнетании	73,0	46,9	61,6	62,0	66,9	67,6	65,3	64,1	55,0
Шум к окружению	59,5	43,9	53,9	50,1	52,2	51,3	51,4	47,6	42,9

Расход воздуха=2380 м³/ч.

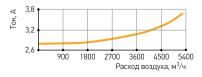


VP 70-40/35.4D

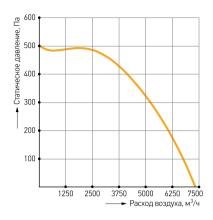


Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	80,6	48,4	65,9	68,0	74,1	75,6	73,8	71,6	64,7
Шум на нагнетании	86,3	54,1	71,6	73,7	79,8	81,3	79,5	77,3	70,4
Шум к окружению	67,4	52,9	62,8	59,1	56,4	60,7	56,5	54,3	51,6

Расход воздуха=2800 м³/ч.

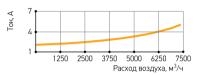


VP 80-50/40.8D

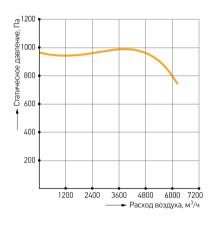


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	67,8	42,7	53,8	59,3	61,2	61,9	60,2	59,9	48,9
Шум на нагнетании	70,7	45,6	56,7	62,2	64,1	64,8	63,1	62,8	51,8
Шум к окружению	59,6	42,6	49,6	54,0	52,5	53,3	50,3	46,8	39,9

Расход воздуха=2700 м³/ч.

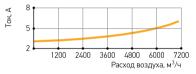


VP 80-50/40.6D

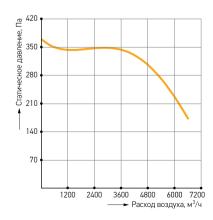


Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	A) 63 125 250 500 1000 2000 4000						8000	
Шум на всасывании	78,9	50,3	60,9	65,7	73,6	73,0	71,5	70,9	64,9
Шум на нагнетании	84,8	56,2	66,8	71,6	79,5	78,9	77,4	76,8	70,8
Шум к окружению	67,8	49,5	58,7	54,8	59,0	57,5	55,8	64,8	50,3

Расход воздуха=3500 м³/ч.

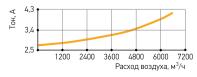


VP 80-50/40.4D

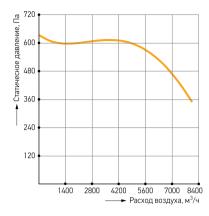


Тип	Суммарный шум, дБ (A)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	4000	8000					
Шум на всасывании	86,9	57,4	70,5	73,0	76,4	83,1	80,7	79,1	73,0
Шум на нагнетании	93,1	63,6	76,7	79,2	82,6	89,3	86,9	85,3	79,2
Шум к окружению	72,9	58,6	68,1	63,0	63,0	66,1	62,9	62,5	59,0

Расход воздуха=4800 м³/ч.

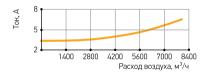


VP 90-50/45.8D

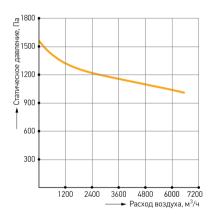


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	72,6	50,8	58,5	64,0	65,9	67,6	64,8	62,6	53,5
Шум на нагнетании	76,1	54,3	62,0	67,5	69,4	71,1	68,3	66,1	57,0
Шум к окружению	63,1	46,7	54,2	51,3	54,6	55,9	54,7	57,0	49,5

Расход воздуха=3840 м³/ч.

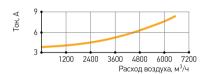


VP 90-50/45.6D

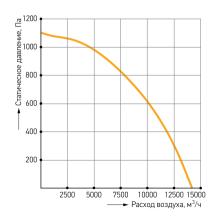


Тип	Суммарный шум, дБ (А)		Ш	ум в окта	вных пол	осах част	от L _i , дБ (A)	
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	82,5	51,3	71,2	70,7	77,1	76,3	75,2	73,8	64,6
Шум на нагнетании	85,9	54,7	74,6	74,1	80,5	79,7	78,6	77,2	68,0
Шум к окружению	62,5	45,8	55,5	53,4	55,0	55,3	54,2	52,4	48,6

Расход воздуха=5040 м³/ч.

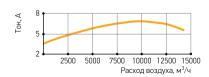


VP 90-50/45.4D



Тип	Суммарный шум, дБ (А)	Шум в октавных полосах частот L _i , дБ (A)							
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	85,8	63,0	70,1	74,1	78,5	80,7	79,4	77,2	71,1
Шум на нагнетании	90,0	67,2	74,3	78,3	82,7	84,9	83,6	81,4	75,3
Шум к окружению	69,1	57,4	65,1	60,0	60,2	61,0	56,6	54,9	52,9

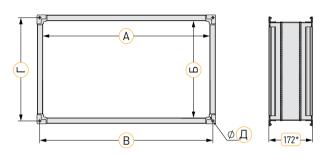
Расход воздуха=3840 м³/ч.



VP 100-50/63.4D

Тип	Суммарный шум, дБ (А)	Шум в октавных полосах частот L,, дБ (A)							
	L сум, дБ(A)	63	125	250	500	1000	2000	4000	8000
Шум на всасывании	81,3	52,8	70,6	74,8	75,2	76,4	70,6	67,4	62,3
Шум на нагнетании	83,6	55,1	72,9	77,1	77,5	78,7	72,9	69,7	64,6
Шум к окружению	69,2	46,7	63,0	59,2	59,5	62,2	61,5	60,9	55,1

Расход воздуха=7500 м³/ч.



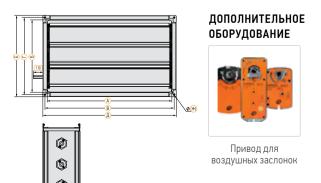
ГИБКАЯ ВСТАВКА МV

Вставки гибкие MV предназначены для снижения механических вибраций, передаваемых от вентилятора к системе воздуховодов и ограждающим конструкциям.

- Прямоугольные фланцы из оцинкованной стали марки 08ПС, соединенные между собой изолирующей виниловой лентой;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Фланцы дополнительно скреплены токопроводящим проводом.

РАЗМЕРЫ И МАССА

Обозначение		Размеры, мм								
ОООЗНАЧЕНИЕ	Α	Б	В	Γ	Д	КГ				
MV 40-20	400	200	420	220	9	2				
MV 50-25	500	250	520	270	9	2,5				
MV 50-30	500	300	520	320	9	2,6				
MV 60-30	600	300	620	320	9	2,9				
MV 60-35	600	350	620	370	9	3				
MV 70-40	700	400	720	420	9	3,5				
MV 80-50	800	500	820	520	9	4				
MV 90-50	900	500	930	530	13	4,5				
MV 100-50	1000	500	1030	530	13	5				


^{*} Размер указан для максимально растянутой гибкой вставки

ЗАСЛОНКА РЕГУЛИРУЮЩАЯ DPR

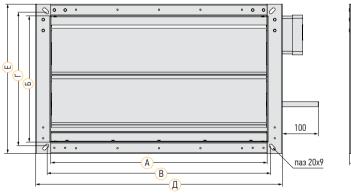
Используются для регулирования подачи воздуха и закрытия вентиляционного канала. Температура перемещаемого воздуха от -40° C до $+70^{\circ}$ C.

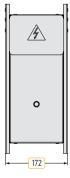
- Корпус из листовой оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Лопатки из алюминия, снабжены резиновым уплотнителем;
- Привод лопаток осуществляется системой износостойких зубчатых колес;
- Управляется с помощью электропривода;
- Сечение штока для монтажа привода квадрат со стороной 10 мм.

РАЗМЕРЫ И МАССА

Обозначение		Размеры, мм									
ооозначение	Α	Б	В	Γ	Д	Е	Ж	И	КГ		
DPR 30-15	300	150	320	170	340	190	9	178	3,8		
DPR 40-20	400	200	420	220	440	240	9	178	5,4		
DPR 50-25	500	250	520	270	540	290	9	178	6,6		
DPR 50-30	500	300	520	320	540	340	9	178	7,6		
DPR 60-30	600	300	620	320	640	340	9	178	8,6		
DPR 60-35	600	350	620	370	640	390	9	178	9,0		
DPR 70-40	700	400	720	420	740	440	9	178	11,2		
DPR 80-50	800	500	820	520	840	540	9	178	13,6		
DPR 90-50	900	500	930	530	960	560	13	190	15,8		
DPR 100-50	1000	500	1030	530	1060	560	13	190	16,8		

ЗАСЛОНКА РЕГУЛИРУЮЩАЯ УТЕПЛЕННАЯ DPU




Используются для регулирования подачи воздуха и закрытия вентиляционного канала. Температура перемещаемого воздуха от -70°C до +40°C.

- Корпус из листовой оцинкованной стали;
- Лопатки из алюминия, без резинового уплотнителя;
- Механизм привода лопаток рычажный, с подшипниками из латуни;
- В местах стыка лопаток друг с другом и с корпусом установлены гладкие трубчатые ТЭНы;
- Встроенная клеммная коробка для подключения питания ТЭНов (степень защиты IP 54);
- Сечение штока для монтажа привода круг с диаметром 14 мм.

РАЗМЕРЫ И МАССА

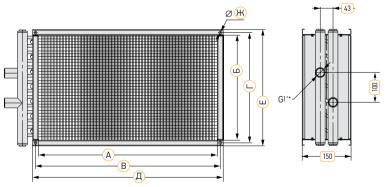
Обозначение		Размеры, мм							
	Α	Б	В	Γ	Д	E	Масса, кг		
DPU 50-30	500	300	520	320	584	364	10,0		
DPU 60-30	600	300	620	320	684	364	11,0		
DPU 60-35	600	350	620	370	684	414	11,6		
DPU 70-40	700	400	720	420	784	464	13,2		
DPU 80-50	800	500	820	520	884	564	17,5		
DPU 90-50	900	500	930	530	984	564	18,8		
DPU 100-50	1000	500	1030	530	1084	564	20,2		

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Обозначение	Общая мощность	Кол-во ТЭН-ов, шт.	Макс. рабочий ток (А) при питании			
ОООЗНАЧЕНИЕ	ТЭН-ов, кВт	VON-RO 13H-OB, MI.	3×380B	1×220B		
DPU 50-30	0,9	3	1,36	4,09		
DPU 60-30	0,9	3	1,36	4,09		
DPU 60-35	0,9	3	1,36	4,09		
DPU 70-40	1,05	3	1,59	4,77		
DPU 80-50	1,6	4	3,64	7,27		
DPU 90-50	1,8	4	4,09	8,18		
DPU 100-50	2,0	4	4,54	9,09		

Привод для воздушных заслонок

НАГРЕВАТЕЛЬ ВОДЯНОЙ NPW



- Поверхность теплообменника представляет собой медные трубки диаметром 9,52 мм с напрессованным на них алюминиевым оребрением (расстояние между ребрами 2,5 мм);
- Корпус нагревателя изготавливается из оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Нагреватели могут иметь два (двухрядные) или три (трехрядные) ряда трубок;
- Максимальная температура теплоносителя подаваемого в теплообменник — 170°С;
- Максимальное давление теплоносителя 1,5 МПа.

Воздухонагреватели NPW используются для нагрева приточного воздуха в системах приточной вентиляции с прямоугольным сечением воздуховодов. Нагреваемый воздух не должен содержать каких-либо агрессивных примесей.

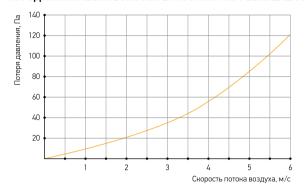
РАЗМЕРЫ И МАССА

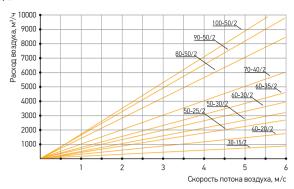
	0.6				Размеры, мм				Заправочный	.,
	Обозначение	A	Б	В	Γ	Д	Е	Ж	объем, л	Масса, кг
	NPW 30-15/2	300	150	320	170	340	190	9	0,5	4,1
	NPW 40-20/2	400	200	420	220	440	240	9	0,7	5,6
	NPW 50-25/2	500	250	520	270	540	290	9	1	6,6
Ple	NPW 50-30/2	500	300	520	320	540	340	9	1,3	7,1
픑	NPW 60-30/2	600	300	620	320	640	340	9	1,5	8,1
Двухрядные	NPW 60-35/2	600	350	620	370	640	390	9	1,7	8,8
ДВ	NPW 70-40/2	700	400	720	420	740	440	9	2,2	10,6
	NPW 80-50/2	800	500	820	520	840	540	9	3,2	13,5
	NPW 90-50/2	900	500	930	530	960	560	9,5	3,5	16,4
	NPW 100-50/2	1000	500	1030	530	1060	560	9,5	3,8	18,5
	NPW 30-15/3	300	150	320	170	340	190	9	0,6	5,6
	NPW 40-20/3	400	200	420	220	440	240	9	1	7,1
	NPW 50-25/3	500	250	520	270	540	290	9	1,4	8,6
e Pe	NPW 50-30/3	500	300	520	320	540	340	9	1,8	10,1
Трехрядные	NPW 60-30/3	600	300	620	320	640	340	9	2	11,6
άx	NPW 60-35/3	600	350	620	370	640	390	9	2,3	13,1
鱼	NPW 70-40/3	700	400	720	420	740	440	9	3	14,6
	NPW 80-50/3	800	500	820	520	840	540	9	4,4	16,1
	NPW 90-50/3	900	500	930	530	960	560	9,5	4,8	17,6
	NPW 100-50/3	1000	500	1030	530	1060	560	9,5	5,3	19,8

^{*} присоединительный размер резьбы для NPW 100-50 – G1 1/2".

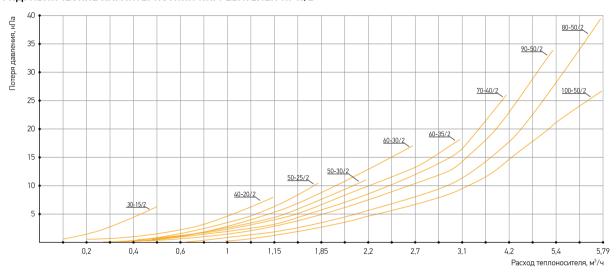
Блок управления UM VR-W

Термостат STW KP 61



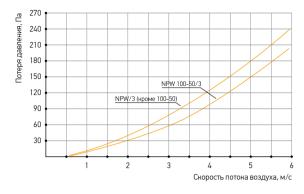


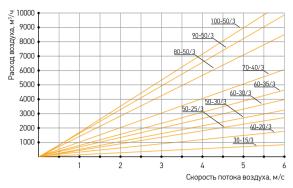
Датчик температуры воды VSP


Смесительный узел ONX

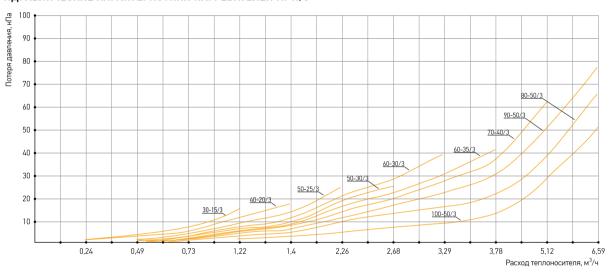
АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАГРЕВАТЕЛЕЙ NPW/2

ГИДРАВЛИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАГРЕВАТЕЛЕЙ NPW/2




ТЕПЛОТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАГРЕВАТЕЛЕЙ NPW/2

Типоразмер	Расход воздуха, м³/ч	Расход теплоносителя, м³/ч	Теплопроизводительность, кВт	Температура воздуха на выходе, °С
30-15	440	0,31	7,08	18
40-20	1150	0,81	18,57	18
50-25	1800	1,27	29,06	18
50-30	2150	1,51	34,71	18
60-30	2600	1,83	41,97	18
60-35	3020	2,13	48,75	18
70-40	4030	2,84	65,06	18
80-50	5750	4,05	92,83	18
90-50	6480	4,57	104,61	18
100-50	7200	5,07	116,25	18


Температура наружного воздуха $t_{{\scriptscriptstyle Hop}}$ = $-20\,^{\circ}$ С, температура воды 90/70 $^{\circ}$ С.

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАГРЕВАТЕЛЕЙ NPW/3

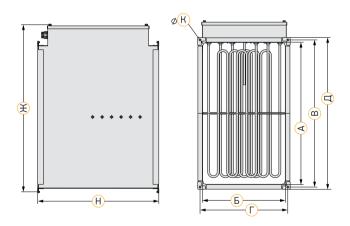
ГИДРАВЛИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАГРЕВАТЕЛЕЙ NPW/3

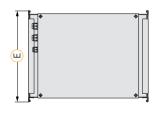
ТЕПЛОТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАГРЕВАТЕЛЕЙ NPW/3

Типоразмер	Расход воздуха, м³/ч	Расход теплоносителя, м³/ч	Теплопроизводительность, кВт	Температура воздуха на выходе, °С
30-15	520	0,53	12,02	29
40-20	1150	1,16	26,69	29
50-25	1800	1,82	41,77	29
50-30	2150	2,18	49,9	29
60-30	2600	2,63	60,34	29
60-35	3020	3,06	70,09	29
70-40	4030	4,08	93,52	29
80-50	5750	5,82	133,44	29
90-50	6480	6,56	150,38	29
100-50	7200	7,29	167,09	29

Температура наружного воздуха $t_{{\scriptscriptstyle Hap}}$ =—30°С, температура воды 90/70°С.

НАГРЕВАТЕЛЬ ЭЛЕКТРИЧЕСКИЙ NPE



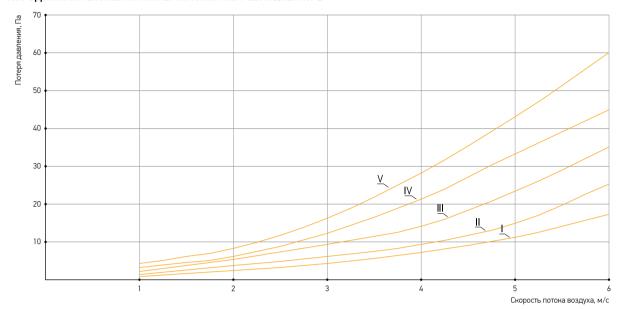

- Корпус нагревателя и коммутационного щита изготавливаются из оцинкованной стали;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Нагревательные элементы ТЭНы с оболочкой из углеродистой стали, класс электроизоляции IP40;
- Надежная двухступенчатая защита от перегрева (термостат в потоке и на корпусе);
- Широкий типоразмерный ряд (мощность от 3 до 60 кВт);
- Рабочий диапазон температур от –70°С до +40°С;
- Рекомендуется использовать вместе с блоками управления UM VR-E, UM CA-E или UM CR4-E.

Электрические воздухонагреватели NPE используются для нагрева приточного воздуха в системах вентиляции с прямоугольным сечением воздуховодов. Нагреваемый воздух не должен содержать каких-либо агрессивных примесей.

ТИПОРАЗМЕРЫ

Мощность	3 кВт	4,5 кВт	6 кВт	7,5 кВт	12 кВт	15 кВт	22.5 кВт	30 кВт	45 кВт	60 кВт
	30-15	30-15								
			40-20		40-20					
				50-25		50-25	50-25			
<u>α</u>				50-30		50-30	50-30			
Типоразмер						60-30	60-30	60-30		
йоп						60-35	60-35	60-35		
Ē						70-40		70-40	70-40	70-40
						80-50		80-50	80-50	80-50
								90-50	90-50	90-50
									100-50	100-50

Силовой щит UM-E

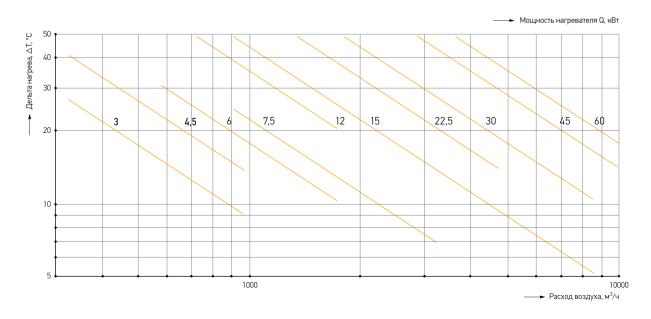

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАГРЕВАТЕЛЕЙ NPE

Обозначение	Мощность, кВт	Ток, А	Напряжение питания, В	Тип питающего кабеля	Кол-во питающих кабелей, шт	Тип кабеля цепи защиты	Конфигурация ТЭНов, кВт
NPE/3	3	13,1	220	BBΓ 3×2,5	1	ПВС 2×0,75	3
NPE/4,5	4,5	19,1	220	ВВГ 3×2,5	1	ПВС 2×0,75	3,5
NPE/6	6	9,1	380	ВВГ 4×2,5	1	ПВС 2×0,75	6
NPE/7,5	7,5	11,3	380	ВВГ 4×2,5	1	ПВС 2×0,75	7,5
NPE/12	12	18,1	380	BBΓ 4×1,5	2	ПВС 2×0,75	6+6
NPE/15	15	22,6	380	BBΓ 4×2,5	2	ПВС 2×0,75	7,5+7,5
NPE/22,5	22,5	33,9	380	ВВГ 4×2,5	2	ПВС 2×0,75	15+7,5
NPE/30	30	45,1	380	BBF 4×6	2	ПВС 2×0,75	15+15
NPE/45	45	67,6	380	ВВГ 4×10	2	ПВС 2×0,75	22,5+22,5
NPE/60	60	90,1	380	BBF 4×16	2	ПВС 2×0,75	30+30

РАЗМЕРЫ И МАССА

06					Размеры, мм					
Обозначение	A	Б	В	Г	Д	E	Ж	К	Н	Масса, кг
NPE 30-15/3	300	150	320	170	340	190	410	9	360	7
NPE 30-15/4,5	300	150	320	170	340	190	410	9	360	7,4
NPE 40-20/6	400	200	420	220	440	240	510	9	390	16
NPE 40-20/12	400	200	420	220	440	240	510	9	510	16
NPE 50-25/7,5	500	250	520	270	540	290	610	9	390	11
NPE 50-25/15	500	250	520	270	540	290	610	9	510	15
NPE 50-25/22,5	500	250	520	270	540	290	610	9	630	19
NPE 50-30/7,5	500	300	520	320	540	340	610	9	390	11,5
NPE 50-30/15	500	300	520	320	540	340	610	9	510	15,7
NPE 50-30/22,5	500	300	520	320	540	340	610	9	630	19,8
NPE 60-30/15	600	300	620	320	640	340	710	9	510	16,8
NPE 60-30/22,5	600	300	620	320	640	340	710	9	630	22,4
NPE 60-30/30	600	300	620	320	640	340	710	9	750	26,4
NPE 60-35/15	600	350	620	370	640	390	710	9	510	17,5
NPE 60-35/22,5	600	350	620	370	640	390	710	9	630	24,6
NPE 60-35/30	600	350	620	370	640	390	710	9	750	28,4
NPE 70-40/15	700	400	720	420	740	440	812	9	510	26,7
NPE 70-40/30	700	400	720	420	740	440	812	9	510	27,1
NPE 70-40/45	700	400	720	420	740	440	830	9	750	41,2
NPE 70-40/60	700	400	720	420	740	440	828	9	750	41,2
NPE 80-50/15	800	500	820	520	840	540	910	9	510	31,3
NPE 80-50/30	800	500	820	520	840	540	910	9	510	31,4
NPE 80-50/45	800	500	820	520	840	540	930	9	750	45,2
NPE 80-50/60	800	500	820	520	840	540	930	9	750	45,2
NPE 90-50/30	900	500	930	530	960	560	960	11	513	31,5
NPE 90-50/45	900	500	930	530	960	560	960	11	753	49,8
NPE 90-50/60	900	500	930	530	960	560	960	11	753	49,8
NPE 100-50/45	1000	500	1030	530	1060	560	1060	11	753	51
NPE 100-50/60	1000	500	1030	530	1060	560	1060	11	753	51

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАГРЕВАТЕЛЕЙ NPE



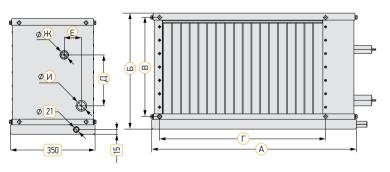
NPE 30-15/3	III
NPE 30-15/4,5	III
NPE 40-20/6	III
NPE 40-20/12	V
NPE 50-25/7,5	II
NPE 50-25/15	IV
NPE 50-25/22,5	V
NPE 50-30/7,5	II
NPE 50-30/15	IV
NPE 50-30/22,5	٧

NPE 60-30/15	III
NPE 60-30/22,5	IV
NPE 60-30/30	V
NPE 60-35/15	II
NPE 60-35/22,5	III
NPE 60-35/30	IV
NPE 70-40/15	I
NPE 70-40/30	II
NPE 40-70/45	II
NPE 70-40/60	III
NPE 60-35/30 NPE 70-40/15 NPE 70-40/30 NPE 40-70/45	IV I II

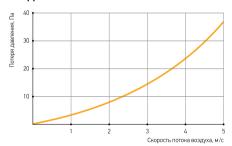
NPE 80-50/15	I
NPE 80-50/30	I
NPE 80-50/45	I
NPE 80-50/60	I
NPE 90-50/30	II
NPE 90-50/45	II
NPE 90-50/60	II
NPE 100-50/45	II
NPE 100-50/60	II

НОМОГРАММА БЫСТРОГО ПОДБОРА НАГРЕВАТЕЛЕЙ NPE

ОХЛАДИТЕЛЬ ФРЕОНОВЫЙ ОГ


- Теплообменник выполнен из медных труб с алюминиевым оребрением;
- Корпус охладителя изготовлен из оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- В комплектацию входят каплеуловитель и изолированный поддон для сбора конденсата;
- Для слива конденсата предусмотрен дренажный патрубок;
- Соединение фреоновых труб выполнено под пайку;
- При поставке фреоновый охладитель опрессован азотом.

Воздухоохладители ОF используются для охлаждения приточного воздуха в системах кондиционирования с прямоугольным сечением воздуховодов. Охлаждаемый воздух не должен содержать каких-либо агрессивных примесей. В испарителях ОF используются такие хладагенты, как фреон R22, R407C, R410A.


ТИПОРАЗМЕРЫ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Типопосмор				Разме	ры, мм				Заправочный Масса, кг		Расход	Выход.	Мощность,
Типоразмер	Α	Б	В	Γ	Д	Е	Ж	И	объем, л	MdCCd, KI	воздуха, м³/ч	воздух, °С	кВт
0F 40-20	564	283	220	420	95	45	12	16	1	16	1000	19	5,6
0F 50-25	664	333	270	520	125	50	12	16	1,4	18	1600	19	9,0
OF 50-30	664	383	320	520	155	50	16	22	1,8	19	1900	19	10,6
OF 60-30	764	383	320	620	155	60	16	22	2	21	2300	19	12,9
OF 60-35	764	433	370	620	192	45	16	22	2,3	23	2700	19	15,1
0F 70-40	864	483	420	720	220	45	22	28	3	26	3600	19	20,2
OF 80-50	964	583	520	820	290	53	22	28	4,4	32	5100	19	28,5
OF 90-50	1074	598	530	930	330	55	28	35	4,8	36	5700	19	32,0
OF 100-50	1174	598	530	1030	330	55	28	35	5,3	42	6300	19	35,5

Температура наружного воздуха $t_{\rm мар}$ =30°С, относительная влажность ϕ = 45%. Температура кипения (R410A) 5°С.

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Блок управления

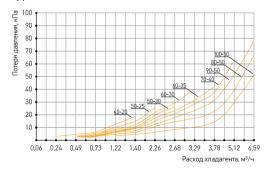
UM VR-E

Блок управления UM VR-W

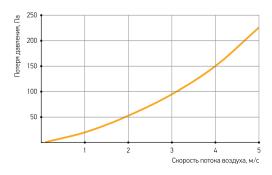
Термостат STW KP 61

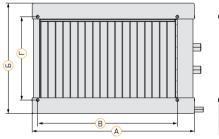
охладитель водяной ow

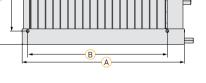
- Теплообменник выполнен из медных труб с алюминиевым оребрением;
- Корпус охладителя изготовлен из оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- В комплектацию входят каплеуловитель и поддон для сбора конденсата;
- Поддон с дренажным патрубком обеспечивает сбор и отвод конденсата;
- Тип хладоносителя вода или незамерзающие смеси с концентрацией гликоля не более 65%.


Воздухоохладители ОW используются для охлаждения приточного воздуха в системах кондиционирования с прямоугольным сечением воздуховодов. Охлаждаемый воздух не должен содержать каких-либо агрессивных примесей.

ТИПОРАЗМЕРЫ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ


Типоразмер	Размеры, мм				Заправочный	Масса,	Расход воздуха,	Расход воды,	Гидравлическое	Выход.	Мощность,
типоразмер	Α	Б	В	Γ	объем, л	КГ	м ³ /ч	м³/ч	сопротивление, кПа	воздух, °С	кВт
OW 40-20	520	340	420	220	1	16	1000	0,81	3,48	20	4,2
OW 50-25	620	390	520	270	1,4	19	1600	1,29	5,60	20	6,8
OW 50-30	620	440	520	320	1,8	21	1900	1,53	5,69	20	8,0
OW 60-30	720	440	620	320	2	23	2300	1,86	8,73	20	9,7
OW 60-35	720	490	620	370	2,3	25	2700	2,19	9,58	20	11,4
OW 70-40	820	540	720	420	3	28	3600	2,91	13,71	20	15,2
OW 80-50	920	640	820	520	4,4	38	5100	4,12	20,79	20	21,5
OW 90-50	1035	655	930	530	4,8	42	5700	4,60	27,56	20	24,0
OW 100-50	1135	655	1030	530	5,3	45	6300	5,08	19,09	20	26,6


Температура наружного воздуха $t_{\text{нор.}}$ =30°С, относительная влажность ϕ = 45%. Температура воды 7/12°С


ГИДРАВЛИЧЕСКИЕ ХАРАКТЕРИСТИКИ

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Чиллер JSE

G 1'

Чиллер с водяным охлаждением JSH

Блок управления UM VR-E

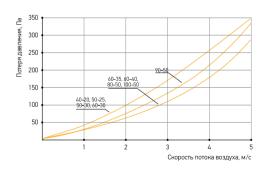
Блок управления UM VR-W

Ø 21

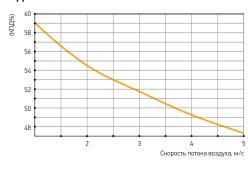
Клапан трехходовой

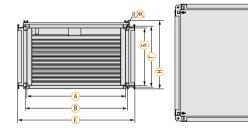
Привод клапанов ZBA

РЕКУПЕРАТОР ПЕРЕКРЕСТНОТОЧНЫЙ КК


- Корпус рекуператора изготавливается из оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Поверхность теплообмена состоит из пакета специальных алюминиевых пластин толщиной 0,2 мм, обеспечивающих высокоэффективную теплопередачу;
- Предусмотрена возможность сбора конденсата, который может образовываться на вытяжных поверхностях теплообмена на нижней съемной панели;
- В комплект поставки рекуператоров входит штуцер для отвода конденсата, который монтируется на нижнюю панель

Перекрестноточные рекуператоры KR используются для утилизации теплоты удаляемого воздуха в системах вентиляции и кондиционировании. Рекуператоры монтируются к воздуховодам прямоугольного сечения. Проходящий воздух не должен содержать агрессивных примесей.


РАЗМЕРЫ И МАССА


Обозначение		Размеры, мм												
ОООЗНАЧЕНИЕ	А	Б	В	Г	Д	E	ж	Н	Масса, кг					
KR 40-20	400	200	420	220	474	516	9	260	16,4					
KR 50-25	500	250	520	270	574	616	9	360	25,4					
KR 50-30	500	300	520	320	574	616	9	360	25,5					
KR 60-30	600	300	620	320	674	716	9	360	29,4					
KR 60-35	600	350	620	370	674	716	9	410	31,4					
KR 70-40	700	400	720	420	774	816	9	460	39,6					
KR 80-50	800	500	820	520	874	916	9	560	51,8					
KR 90-50	900	500	930	530	974	1016	11	560	64,4					
KR 100-50	1000	500	1030	530	1074	1116	11	570	71,8					

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

кпд

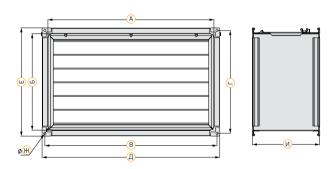
Блок управления UM VR-E

Блок управления UM VR-W

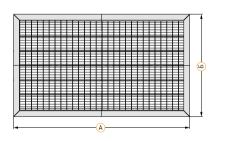
Привод для воздушных заслонок

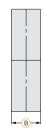
Датчик перепада давления DPD

ФИЛЬТР КАССЕТНЫЙ КРF, ВСТАВКА КАССЕТНАЯ ФИЛЬТРУЮЩАЯ SPK

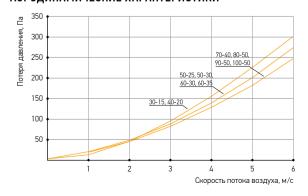

Кассетные фильтры КРГ предназначены для очистки воздуха, подающегося в каналы прямоугольного сечения.

- Корпуса фильтра и фильтрующей вставки изготавливаются из листовой оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Фильтрующий материал синтетическое волокно. Вставка выполнена в виде кассеты и имеет класс очистки воздуха G3. Фильтрующий материал крепится к кассете с помощью металлической сетки.


РАЗМЕРЫ И МАССА


Обозначение				Размеры к	орпуса, мм				M	Размеры вставки, мм		и, мм
Ооозначение	А	Б	В	Г	Д	E	Ж	И	Масса, кг	А	Б	В
KPF 30-15	300	150	320	170	340	190	9	242	3,6	299	148	100
KPF 40-20	400	200	420	220	440	240	9	242	4	399	198	100
KPF 50-25	500	250	520	270	540	290	9	242	4,8	499	248	100
KPF 50-30	500	300	520	320	540	340	9	242	5,1	499	298	100
KPF 60-30	600	300	620	320	640	340	9	242	5,4	599	298	100
KPF 60-35	600	350	620	370	640	390	9	242	5,7	599	348	100
KPF 70-40	700	400	720	420	740	440	9	242	6,8	699	398	100
KPF 80-50	800	500	820	520	840	540	9	242	11,0	799	498	100
KPF 90-50	900	500	930	530	960	560	11	260	15,0	899	498	100
KPF 100-50	1000	500	1030	530	1060	560	11	260	19,0	999	498	100

КОРПУС ФИЛЬТРА

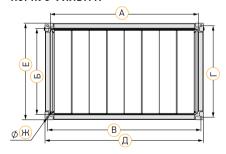


ФИЛЬТРУЮЩАЯ ВСТАВКА

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

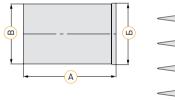
Датчик перепада давления DPD

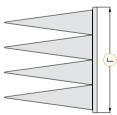
ФИЛЬТР КАРМАННЫЙ УКОРОЧЕННЫЙ КРИ ВСТАВКА ФИЛЬТРУЮЩАЯ УКОРОЧЕННАЯ SPU

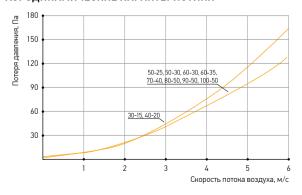

Карманные фильтры типа KPU предназначены для очистки воздуха, подающегося в каналы прямоугольного сечения.

- Корпуса фильтров и фильтрующей вставки изготавливаются из листовой оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Фильтрующий материал синтетическое волокно. Вставка выполнена в виде кассеты мешочного типа. Фильтры типа КРU имеют укороченную длину кармана по сравнению с фильтрами КРR. Класс очистки фильтрующих вставок SPU к фильтрам КРU – G3.

РАЗМЕРЫ И МАССА


06				Размеры к	орпуса, мм				M	Размеры вставки, мм			
Обозначение	А	Б	В	Γ	Д	Е	Ж	И	Масса, кг	Α	Б	В	Г
KPU 30-15	300	150	320	170	340	190	9	330	4,5	210	147	140	298
KPU 40-20	400	200	420	220	440	240	9	330	5,4	210	197	190	398
KPU 50-25	500	250	520	270	540	290	9	330	6,6	210	247	240	498
KPU 50-30	500	300	520	320	540	340	9	330	7,2	210	297	290	498
KPU 60-30	600	300	620	320	640	340	9	330	8,0	210	297	290	598
KPU 60-35	600	350	620	370	640	390	9	330	8,4	210	347	340	598
KPU 70-40	700	400	720	420	740	440	9	330	9,6	210	397	390	698
KPU 80-50	800	500	820	520	840	540	9	330	13,4	210	497	490	798
KPU 90-50	900	500	930	530	960	560	11	340	15,2	210	497	490	898
KPU 100-50	1000	500	1030	530	1060	560	11	340	15,0	210	497	490	998


КОРПУС ФИЛЬТРА

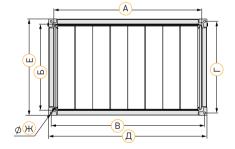


ФИЛЬТРУЮЩАЯ ВСТАВКА

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

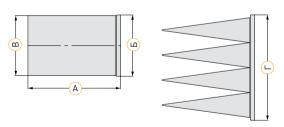
Датчик перепада давления DPD

ФИЛЬТР КАРМАННЫЙ KPR, ВСТАВКА ФИЛЬТРУЮЩАЯ КАРМАННАЯ SPR

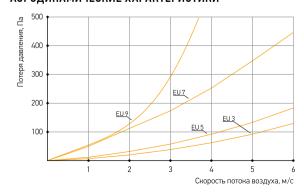

Карманные фильтры типа KPR предназначены для очистки воздуха, подающегося в каналы прямоугольного сечения.

- Корпуса фильтров и фильтрующей вставки изготавливаются из листовой оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Фильтрующий материал синтетическое волокно. Вставка выполнена в виде кассеты мешочного типа. Фильтры типа КРR имеют увеличенную длину кармана по сравнению с фильтрами КРU. Класс очистки фильтрующих вставок SPR к фильтрам KPR – G3, F5, F7, F9;
- По заказу доступны фильтрующие вставки НЕРА классов H11-H14.

РАЗМЕРЫ И МАССА


Обозначение				Размеры к	орпуса, мм				M	Размеры вставки, мм			
ооозначение	А	Б	В	Γ	Д	Е	Ж	И	Масса, кг	А	Б	В	Γ
KPR 30-15	300	150	320	170	340	190	9	540	6	420	147	140	298
KPR 40-20	400	200	420	220	440	240	9	540	6,8	420	197	190	398
KPR 50-25	500	250	520	270	540	290	9	640	9,4	520	247	240	498
KPR 50-30	500	300	520	320	540	340	9	640	10,2	520	297	290	498
KPR 60-30	600	300	620	320	640	340	9	640	11,0	520	297	290	598
KPR 60-35	600	350	620	370	640	390	9	640	11,2	520	347	340	598
KPR 70-40	700	400	720	420	740	440	9	720	14,2	600	397	390	698
KPR 80-50	800	500	820	520	840	540	9	800	23,4	680	497	490	798
KPR 90-50	900	500	930	530	960	560	11	820	26,0	680	497	490	898
KPR 100-50	1000	500	1030	530	1060	560	11	820	27,6	680	497	490	998

КОРПУС ФИЛЬТРА



ФИЛЬТРУЮЩАЯ ВСТАВКА

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Датчик перепада давления DPD

БАКТЕРИЦИДНАЯ СЕКЦИЯ UFB

Предназначены для обеззараживания воздуха ультрафиолетовым излучением в системах вентиляции и кондиционирования воздуха медицинских, детских, спортивных и других помещений.

- Корпус из оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Оснащены бактерицидными газоразрядными лампами низкого давления с потребляемой электрической мощностью 75 Вт и длиной волны УФ излучения 253,7 нм;
- Для доступа к лампам в конструкции корпуса предусмотрена откидная крышка.

МЕТОДИКА ПОДБОРА

Методика расчета (в соответствии с руководством Минздрава Р 3.531904-04, пр. 4):

Требуемое количество ламп рассчитывается по формуле:

$$N_{\text{Л}} = \frac{L_{\text{тр.}} \times \text{Hv} \times \text{K3}}{\Phi \text{бк.л} \times \text{K} \phi \times 3600}$$

где Nл – требуемое количество ламп;

 $L_{\text{тр.}}$ – расход воздуха, м³/ч;

Hv- требуемая объемная бактерицидная доза, Дж/м³;

Кз – коэффициент запаса

(для приточно-вытяжной вентиляции 1,5);

Фбк. л – бактерицидный поток 1-й лампы, (26,5 Вт);

Кф — коэффициент использования бактерицидного потока (для голых цилиндрических ламп 0,9).

Следовательно, конечная формула для расчета:

$$Nn = \frac{L_{\text{Tp.}} \times Hv \times 1,5}{26,5 \times 0,9 \times 3600} = \frac{L_{\text{Tp.}} \times Hv}{57240}$$

Далее выбирается секция/несколько секций с большим, чем расчетный, суммарным количеством ламп. При этом расход воздуха через выбранную секцию не должен превышать максимально допустимого.

ПРИМЕР РАСЧЁТА

Дано: $L_{\text{тр.}} = 4000 \,\text{м}^3/\text{ч}$, 3-я категория помещения.

Расчет:

$$N_{\text{Л}} = \frac{4000 \times 167}{57240} \approx 12$$
 ламп

Выбираем секцию UFB 60-35/222 с 14 лампами.

При нехватке бактерицидного потока на одной секции можно установить несколько секций последовательно.

ТИПЫ ПОМЕЩЕНИЙ, ПОДЛЕЖАЩИХ ОСНАЩЕНИЮ БАКТЕРИЦИДНЫМ ОБОРУДОВАНИЕМ

- 1 КАТЕГОРИЯ (H_v= 385 Дж/м³)
- операционные;
- предоперационные;
- родильные;
- стерильные зоны ЦСО;
- детские палаты роддомов.

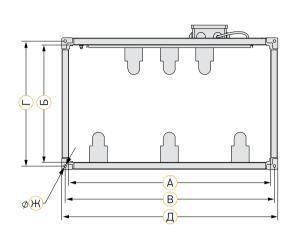
2 КАТЕГОРИЯ (H_v= 256 Дж/м³)

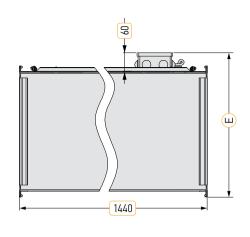
- перевязочные;
- палаты реанимационных отделений;
- помещения нестерильных зон ЦСО;
- бактериологические и вирусологические лаборатории;
- фармацевтические цеха.

3 КАТЕГОРИЯ (H_v= 167 Дж/м³)

- палаты;
- кабинеты и другие помещения ЛПУ (не включенные в 1 и 2 категории).

4 КАТЕГОРИЯ (H_v= 130 Дж/м³)


- детские игровые комнаты;
- школьные классы;
- бытовые помещения общественных и промышленных зданий с большим скоплением людей при длительном пребывании.


5 КАТЕГОРИЯ ($H_v = 105 \, \text{Дж/м}^3$)

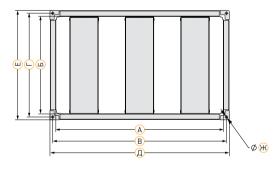
 общественные туалеты и лестничные площадки помещений ЛПУ

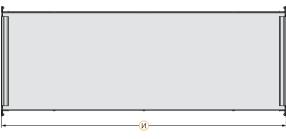
Устройство контроля работы ламп для UFB

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Типоразмер	Обозначение	Сумм. бакт.	Макс. расход			Pa	азмеры, м	им			Масса, кг	Мощн.	Кол-во
гипоразмер	ооозначение	поток, Дж/м³	воздуха, м³/ч	Α	Б	В	Γ	Д	E	Ж	Macca, Ki	ламп, кВт	ламп, шт
	UFB 40-20	143		400	200	420	220	440	280	9	42	0,68	9
40-20	UFB 40-20	95	1700	400	200	420	220	440	280	9	33,5	0,45	6
40-20	UFB 40-20	63	1700	400	200	420	220	440	280	9	27,4	0,3	4
	UFB 40-20	32		400	200	420	220	440	280	9	21,3	0,15	2
	UFB 50-25	159		500	250	520	270	540	330	9	48,5	0,75	10
50-25	UFB 50-25	111	2700	500	250	520	270	540	330	9	40,5	0,53	7
JU-2J	UFB 50-25	63	2700	500	250	520	270	540	330	9	31,5	0,3	4
	UFB 50-25	32		500	250	520	270	540	330	9	25,4	0,15	2
	UFB 50-30	174		500	300	520	320	540	380	9	51,5	0,83	11
50-30	UFB 50-30	111	3200	500	300	520	320	540	380	9	41,5	0,53	7
30-30	UFB 50-30	79	3200	500	300	520	320	540	380	9	36,2	0,38	5
	UFB 50-30	47		500	300	520	320	540	380	9	30,1	0,22	3
	UFB 60-30	190		600	300	620	320	640	380	9	57,7	0,9	12
/0.20	UFB 60-30	127	2000	600	300	620	320	640	380	9	47	0,6	8
60-30	UFB 60-30	79	3800	600	300	620	320	640	380	9	38,8	0,38	5
	UFB 60-30	47		600	300	620	320	640	380	9	32,7	0,22	3
	UFB 60-35	222		600	350	620	370	640	430	9	65	1,05	14
/O 2F	UFB 60-35	143	/500	600	350	620	370	640	430	9	52,4	0,68	9
60-35	UFB 60-35	95	4500	600	350	620	370	640	430	9	45,3	0,45	6
	UFB 60-35	63		600	350	620	370	640	430	9	39,2	0,3	4
	UFB 70-40	270		700	400	720	420	740	480	9	91,5	1,28	17
70. (0	UFB 70-40	174	4000	700	400	720	420	740	480	9	75,3	0,83	11
70-40	UFB 70-40	111	6000	700	400	720	420	740	480	9	64,5	0,53	7
	UFB 70-40	63		700	400	720	420	740	480	9	55,4	0,3	4
	UFB 80-50	302		800	500	820	520	840	580	9	103,5	1,43	19
00 50	UFB 80-50	206	0.400	800	500	820	520	840	580	9	88	0,98	13
80-50	UFB 80-50	127	8600	800	500	820	520	840	580	9	74	0,6	8
	UFB 80-50	79		800	500	820	520	840	580	9	64,9	0,38	5
	UFB 90-50	365		900	500	930	530	960	580	11	118,5	1,73	23
00.50	UFB 90-50	238	0.700	900	500	930	530	960	580	11	97	1,13	15
90-50	UFB 90-50	159	9700	900	500	930	530	960	580	11	83,2	0,75	10
	UFB 90-50	95		900	500	930	530	960	580	11	71	0,45	6
	UFB 100-50	397		1000	500	1030	530	1060	580	11	127,3	1,88	25
400 50	UFB 100-50	270		1000	500	1030	530	1060	580	11	105,7	1,28	17
100-50	UFB 100-50	190	10800	1000	500	1030	530	1060	580	11	92,2	0,9	12
	UFB 100-50	111		1000	500	1030	530	1060	580	11	77	0,53	7

ШУМОГЛУШИТЕЛЬ GHP

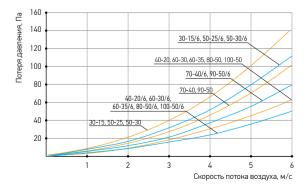



Шумоглушители GHP используются для снижения уровня шума от вентиляторов в вентиляционных системах прямоугольного сечения. Монтируются в любом положении.

- Корпус шумоглушителя выполнен из оцинкованной стали марки 08ПС;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Шумопоглощающие пластины выполнены из минеральной ваты, обтянутой войлоком, предотвращающим выдувание частиц. Кол-во шумопоглощающих пластин – от 2-х до 5-ти в зависимости от типоразмера;
- 10 типоразмеров, в каждом из которых существует две модификации длины шумопоглощающего участка: 600 и 1000 мм (6/10).

РАЗМЕРЫ И МАССА

Обозначение				Разме	ры, мм				Масса, кг	Число
ОООЗНАЧЕНИЕ	А	Б	В	Γ	Д	Е	Ж	И	Macca, Ki	пластин
GHP 30-15 (6/10)	300	150	320	170	340	190	9	614/1014	10/16	3
GHP 40-20 (6/10)	400	200	420	220	440	240	9	614/1014	16/26	2
GHP 50-25 (6/10)	500	250	520	270	540	290	9	614/1015	16,5/27	3
GHP 50-30 (6/10)	500	300	520	320	540	340	9	614/1016	18/30	3
GHP 60-30 (6/10)	600	300	620	320	640	340	9	614/1017	19/32	3
GHP 60-35 (6/10)	600	350	620	370	640	390	9	614/1018	22/37	3
GHP 70-40 (6/10)	700	400	720	420	740	440	9	614/1019	29/48	4
GHP 80-50 (6/10)	800	500	820	520	840	540	9	614/1020	35/58	4
GHP 90-50 (6/10)	900	500	930	530	960	560	11	616/1016	38/64	5
GHP 100-50 (6/10)	1000	500	1030	530	1060	560	11	616/1016	42/70	5



ШУМОПОДАВЛЕНИЕ

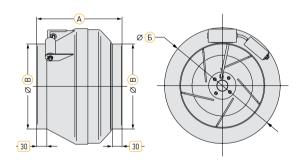
06		Шумоп	одавлен	ие (дБ) в	з диапаз	онах час	тот (Гц)	
Обозначение	63	125	250	500	1000	2000	4000	8000
GHP 30-15 (6/10)	1,2/2	2,4/4	4/7	9,1/16	18/28	21/36	21/35	17/27
GHP 40-20 (6/10)	15/24	11/20	10/17	15/25	20/33	28/46	23/40	21/33
GHP 50-25 (6/10)	14/23	11/19	12/19	18/28	23/40	29/47	31/52	28/49
GHP 50-30 (6/10)	15/26	13/20	13/22	19/33	25/42	32/52	31/53	34/55
GHP 60-30 (6/10)	12/21	10/17	11/17	17/29	24/37	28/48	26/44	22/36
GHP 60-35 (6/10)	10/17	9/15	8/14	15/25	22/38	29/49	26/42	26/42
GHP 70-40 (6/10)	12/21	10/18	12/19	19/32	27/43	31/52	34/55	28/49
GHP 80-50 (6/10)	11/19	9/14	10/18	14/23	25/41	32/52	30/51	24/40
GHP 90-50 (6/10)	12/21	10/16	12/20	18/29	27/47	34/54	32/55	26/45
GHP 100-50 (6/10)	12/19	9/15	11/17	13/23	26/41	31/52	30/51	25/40

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ВЕНТИЛЯТОР VK

Вентиляторы VK используются для перемещения воздуха и неагрессивных газовых смесей в системах приточновытяжной общеобменной вентиляции с круглым сечением воздуховодов. Могут монтироваться в любом положении.

- Легкий и прочный корпус из пластика обеспечивает низкий уровень шума, стойкость к коррозии и механическим повреждениям;
- Рабочее колесо из композитного материала (VK250 VK315 из оцинкованной стали) с назад загнутыми лопатками;
- Асинхронный электродвигатель с внешним ротором и встроенной защитой от перегрева с автоматическим перезапуском. Корпус из алюминия. Степень защиты IP44.
 Обмотка оснащена дополнительной защитой от влаги. Класс нагревостойкости изоляции F.


ТИПОРАЗМЕРЫ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Обозначение	Макс. расход воздуха, м³/ч*	Макс. статич. давление, Па*	Макс. скорость вращения, об/ мин	Питание электро- двигателя, В	Мощность электро- двигателя, Вт	Макс. рабочий ток, А	Щит управления вентилятором	Рекомендуемый регулятор скорости
VK 100/1	260	312	2450	1~220	56	0,25	UM-V1,2-TK1	FSC
VK 125/1	365	310	2450	1~220	76	0,36	UM-V1,2-TK1	FSC
VK 160/1	675	390	2550	1~220	106	0,48	UM-V1,2-TK1	FSC
VK 200/1	970	460	2600	1~220	163	0,74	UM-V1,2-TK1	FSC
VK 250/1	1075	520	2500	1~220	210	0,96	UM-V1,2-TK1	FSC
VK 315/1	1845	660	2500	1~220	313	1,42	UM-V1,2-TK1	FSC

^{*}Максимальный расход приведен для минимального рабочего давления, максимальное давление указано при минимальном расходе

РАЗМЕРЫ И МАССА

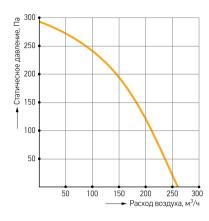
Обозначение		Размеры, мм		M
Ооозначение	А	Б	В	Масса, кг
VK 100/1	215	251	99	2,6
VK 125/1	220	251	124	2,7
VK 160/1	230	340	159	4,0
VK 200/1	250	340	199	4,6
VK 250/1	250	340	249	5,0
VK 315/1	285	405	314	6,6

Хомут быстроразъемный НКВ

Кронштейн KRV

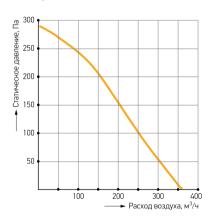
Шумоглушитель СНК

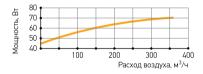
Щит управления вентилятором UM-V

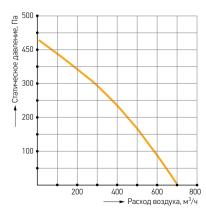


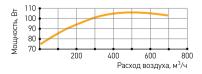
Регулятор оборотов электронный FSC

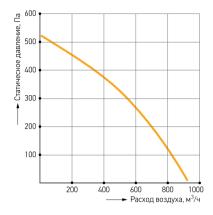
Датчик перепада давления DPD

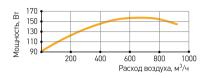

VK 100/1

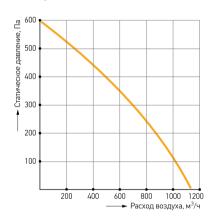

Режим работы	Lсум,дБ(A)	Уровень звуковой мощности (L, дБА) в октавных полосах частот, Гц							
		63	125	250	500	1000	2000	4000	8000
Шум на нагнетании	67,7	76,7	72,2	71,1	65,2	59,4	58,2	51,5	48,1
Шум к окружению	50,0	69,7	47,2	42,1	45,2	45,4	41,2	36,5	33,1

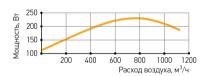

VK 125/1

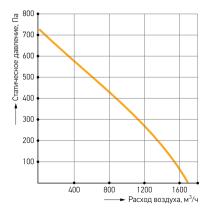

Режим работы	Lсум,дБ(A)	Уровень звуковой мощности (L, дБА) в октавных полосах частот, Гц								
	•	63	125	250	500	1000	2000	4000	8000	
Шум на нагнетании	68,9	76,7	74,6	71,6	67	59,8	60,1	51,6	50,1	
Шум к окружению	51,0	69,7	49,6	42,6	47	45,8	43,1	36,6	35,1	

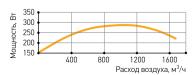

VK 160/1


Режим работы	Lсум,дБ(A)	Уровень звуковой мощности (L, дБА) в октавных полосах частот, Гц								
		63	125	250	500	1000	2000	4000	8000	
Шум на нагнетании	73,9	81,7	79,6	76,6	72	64,8	65,1	56,6	55,1	
Шум к окружению	60,0	78,7	58,6	51,6	56	54,8	52,1	45,6	44,1	


VK 200/1


Режим работы	Lсум,дБ (A)	Уровень звуковой мощности (L, дБА) в октавных полосах частот, Гц							
		63	125	250	500	1000	2000	4000	8000
Шум на нагнетании	72,9	80,7	78,6	75,6	71	63,8	64,1	55,6	54,1
Шум к окружению	59,0	77,7	57,6	50,6	55	53,8	51,1	44,6	43,1

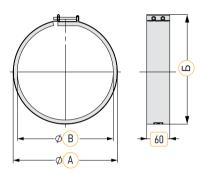

VK 250/1


Режим работы	Lсум,дБ (A)	Уровень звуковой мощности (L, дБА) в октавных полосах частот, Гц								
	,	63	125	250	500	1000	2000	4000	8000	
Шум на нагнетании	74,9	83,2	79,6	78,1	73	66,5	65,1	58	55,1	
Шум к окружению	56,1	75,2	53,6	48,1	52	51,5	47,1	42	38,1	

VK 315/1

Режим работы	Lсум,дБ (A)	Уровень звуковой мощности (L, дБА) в октавных полосах частот, Гц								
		63	125	250	500	1000	2000	4000	8000	
Шум на нагнетании	76,9	84,7	82,6	79,6	75	67,8	68,1	59,6	58,1	
Шум к окружению	57,0	75,7	55,6	48,6	53	51,8	49,1	42,6	41,1	

ХОМУТ БЫСТРОРАЗЪЕМНЫЙ НКВ



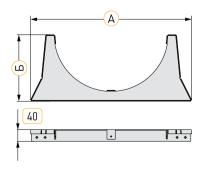
Быстроразъемные хомуты НКВ используются для монтажа вентиляторов VK и элементов вентиляционных систем круглого сечения.

- Хомуты изготавливаются из листовой оцинкованной стали, которая изолирована слоем уплотнителя, позволяющим гасить вибрацию и гарантирующим герметичность соединения и плотную посадку;
- Хомуты стягиваются двумя болтами;
- Поставляются в плоском виде.

РАЗМЕРЫ И МАССА

Обозначение		Масса, кг		
ОООЗНАЧЕНИЕ	А	Б	В	Масса, кі
HKB 100	118	148	100	0,24
HKB 125	145	174	125	0,27
HKB 160	178	212	160	0,32
HKB 200	218	253	200	0,39
HKB 250	268	304	250	0,46
HKB 315	333	370	315	0,55

КРОНШТЕЙН KRV



Кронштейны KRV используются для крепления вентиляторов VK к поверхности.

- Кронштейны выполнены из оцинкованной стали марки 08ПС;
- Конструкция кронштейнов обеспечивает надежное крепление вентиляторов к несущей поверхности.

РАЗМЕРЫ И МАССА

Обозначение	Разме	Размеры, мм					
обозначение	А	Б	Масса, кг				
KRV 100	430	165	0,68				
KRV 125	430	165	0,68				
KRV 160	520	210	0,89				
KRV 200	520	210	0,89				
KRV 250	520	210	1,19				
KRV 315	588	245	1,19				
	*						

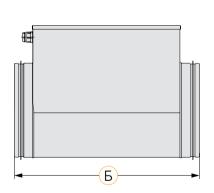
НАГРЕВАТЕЛЬ ЭЛЕКТРИЧЕСКИЙ NKE

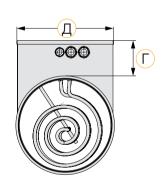
- Корпус нагревателя и коммутационного щита изготавливается из оцинкованной стали марки 08ПС;
- Нагревательные элементы ТЭНы с оболочкой из углеродистой стали, класс электроизоляции IP40;
- Надежная двухступенчатая защита от перегрева (термостат в потоке и на корпусе);
- Нагреватели мощностью 12 кВт и более выполняются с двумя равными ступенями мощности;
- Рабочий диапазон температур от –70°C до +40°C;
- Широкий типоразмерный ряд (мощность от 0,5 до 18 кВт).
- Рекомендуется использовать вместе с блоками управления UM VR-E, UM CA-E или UM CR4-E.

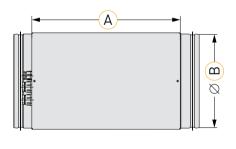
Электрические воздухонагреватели NKE используются для нагрева приточного воздуха в системах приточной вентиляции с круглым сечением воздуховодов. Нагреваемый воздух не должен содержать каких-либо агрессивных смесей.

ТИПОРАЗМЕРЫ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

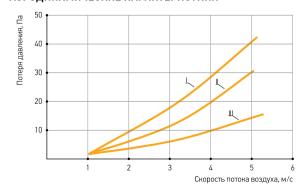
Типорозмор	Мошность. кВт	Tou. A	Кол. фаз, напря-	Кабель г	питания	Кабель цепи	Конфигурация	
Типоразмер	Обозначение	мощность, квт	Ток, А	жение питания, В	Тип	Кол-во	защиты	ТЭНов, кВт
	NKE 100/0,5	0,5	2,3	1~220	ВВГ 3×1,5	1	ПВС 2×0,75	0,5
100	NKE 100/1,5	1,5	6,8	1~220	ВВГ 3×1,5	1	ПВС 2×0,75	1,5
100	NKE 100/2	2,0	9,1	1~220	ВВГ 3×2,5	1	ПВС 2×0,75	2
	NKE 100/2,5	2,5	11,3	1~220	BBΓ 3×2,5	1	ПВС 2×0,75	2,5
	NKE 125/1,5	1,5	6,8	1~220	ВВГ 3×1,5	1	ПВС 2×0,75	1,5
105	NKE 125/2	2,0	9,1	1~220	ВВГ 3×2,5	1	ПВС 2×0,75	2
125	NKE 125/2,5	2,5	11,3	1~220	ВВГ 3×2,5	1	ПВС 2×0,75	2,5
	NKE 125/3	3,0	13,6	1~220	ВВГ 3×2,5	1	ПВС 2×0,75	3
	NKE 160/2	2,0	9,1	1~220	BBΓ 3×2,5	1	ПВС 2×0,75	2
160	NKE 160/3	3,0	13,6	1~220	ВВГ 3×2,5	1	ПВС 2×0,75	3
100	NKE 160/4,5	4,5	6,8	3~380	ВВГ 4×2,5	1	ПВС 2×0,75	4,5
	NKE 160/6	6,0	9,1	3~380	ВВГ 4×2,5	1	ПВС 2×0,75	6
	NKE 200/3	3,0	13,6	1~220	BBΓ 3×2,5	1	ПВС 2×0,75	3
000	NKE 200/6	6,0	9,1	3~380	ВВГ 4×2,5	1	ПВС 2×0,75	6
200	NKE 200/9	9,0	13,6	3~380	ВВГ 4×2,5	1	ПВС 2×0,75	9
	NKE 200/12	12,0	18,1	3~380	ВВГ 4×2,5	2	ПВС 2×0,75	6+6
	NKE 250/6	6,0	9,1	3~380	ВВГ 4×2,5	1	ПВС 2×0,75	6
050	NKE 250/9	9,0	13,6	3~380	ВВГ 4×2,5	1	ПВС 2×0,75	9
250	NKE 250/12	12,0	19,1	3~380	ВВГ 4×2,5	2	ПВС 2×0,75	6+6
	NKE 250/15	15,0	22,7	3~380	ВВГ 4×2,5	2	ПВС 2×0,75	7,5+7,5
	NKE 315/6	6,0	9,1	3~380	ВВГ 4×2,5	1	ПВС 2×0,75	6
	NKE 315/9	9,0	13,6	3~380	ВВГ 4×2,5	1	ПВС 2×0,75	9
315	NKE 315/12	12,0	18,1	3~380	ВВГ 4×2,5	2	ПВС 2×0,75	6+6
	NKE 315/15	15,0	22,7	3~380	ВВГ 4×2,5	2	ПВС 2×0,75	7,5+7,5
	NKE 315/18	18,0	27,2	3~380	ВВГ 4×2,5	2	ПВС 2×0,75	9+9






Блок управления UM VR-E

РАЗМЕРЫ И МАССА

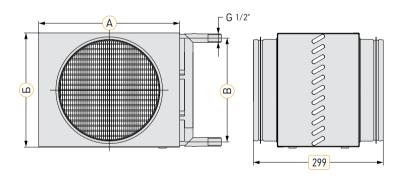

Типоразмер	Обозначение			Размеры, м	М		Масса, кг
типоразмер	Ооозначение	А	Б	В	Γ	Д	Macca, Ki
	NKE 100/0,5	198	297	100	75	104	1,4
100	NKE 100/1,5	263	361	100	75	104	1,8
100	NKE 100/2	312	410	100	75	104	2,2
	NKE 100/2,5	359	457	100	75	104	2,4
	NKE 125/1,5	231	329	125	83	129	1,9
105	NKE 125/2	231	329	125	83	129	2,0
125	NKE 125/2,5	254	350	125	83	129	2,3
	NKE 125/3	254	350	125	83	129	2,4
	NKE 160/2	274	370	160	84	164	2,6
160	NKE 160/3	274	370	160	84	164	2,8
100	NKE 160/4,5	274	370	160	84	164	3,2
	NKE 160/6	394	490	160	84	164	4,2
	NKE 200/3	274	370	200	87	204	3,2
200	NKE 200/6	274	370	200	87	204	4,0
200	NKE 200/9	394	490	200	87	204	5,2
	NKE 200/12	394	490	200	87	204	6,2
	NKE 250/6	274	370	250	100	254	5,6
250	NKE 250/9	274	370	250	100	254	6,0
250	NKE 250/12	394	490	250	100	254	8,6
	NKE 250/15	394	490	250	100	254	8,7
	NKE 315/6	274	370	315	100	319	6,6
	NKE 315/9	274	370	315	100	319	6,8
315	NKE 315/12	394	490	315	100	319	9,6
	NKE 315/15	394	490	315	100	319	9,7
	NKE 315/18	394	490	315	100	319	10,4

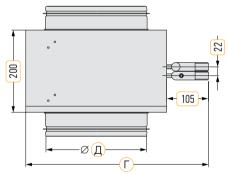
АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

NKE 100/0,5	I
NKE 100/1,5	I
NKE 100/2	II
NKE 100/2,5	II
NKE 125/1,5	I
NKE 125/2	I
NKE 125/2,5	III
NKE 125/3	III
NKE 160/2	II
NKE 160/3	II
NKE 160/4,5	II
NKE 160/6	II
NKF 200/3	ll l

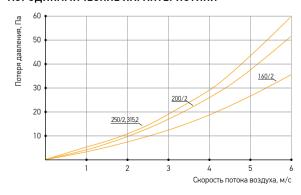
NKE 200/6	II
NKE 200/9	II
NKE 200/12	III
NKE 250/6	I
NKE 250/9	I
NKE 250/12	II
NKE 250/15	I
NKE 315/6	I
NKE 315/9	I
NKE 315/12	II
NKE 315/15	I
NKE 315/18	I

НАГРЕВАТЕЛЬ ВОДЯНОЙ NKW


- Поверхность темплообменника представляет собой медные трубки с напрессованным на них алюминиевым оребрением;
- Корпус нагревателя изготавливается из оцинкованной стали марки 08ПС;
- Нагреватели имеют два ряда трубок (двухрядные);
- Максимальная температура теплоносителя 170°С;
- Максимальное давление теплоносителя 1,5 МПа;
- Теплоноситель вода или антифриз с концентрацией гликоля не более 65%.


Воздухонагреватели NKW используются для нагрева приточного воздуха в системах приточной вентиляции с круглым сечением воздуховодов. Могут монтироваться в любом положении, обеспечивающем отвод воздуха из водяного контура.

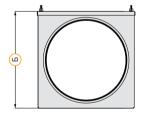
ТИПОРАЗМЕРЫ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

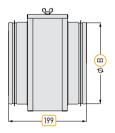

	Обозначение	Размеры, мм					Масса, кг	Расход воздуха,	Расход воды,	Гидравлическое	Мощность, кВт	Температура воз-
		Α	Б	В	Γ	Д	Macca, Ki	м³/ч	м³/ч	сопротивление, кПа	Мощность, кы	духа на выходе, °С
	NKW 160/2	270	203	163	375	160	3,2	350	0,3	2,8	6,93	20
	NKW 200/2	295	226	186	400	200	3,8	530	0,44	6,17	10	18
	NKW 250/2	345	276	236	450	250	4,6	850	0,7	18,29	16	18
	NKW 315/2	420	353	313	525	315	6,2	1330	1,11	21,1	25,17	18

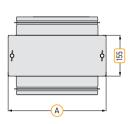
Температура наружного воздуха: $t_{\text{нар}}$ = -28°C Температура теплоносителя: 90/70°C

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

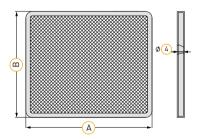
КАССЕТНЫЙ ФИЛЬТР ККГ ВСТАВКА КАССЕТНАЯ ФИЛЬТРУЮЩАЯ SKF

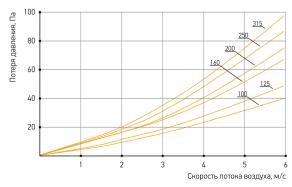

Кассетные фильтры типа ККГ предназначены для очистки воздуха, подающегося в каналы круглого сечения. Максимальная температура подаваемого воздуха +70°C.


- Корпус фильтра и крышка обслуживания изготавливаются из листовой оцинкованной стали;
- Фильтрующий материал из синтетического волокна;
- Вставка выполнена в виде пластины и имеет класс очистки воздуха G3.


РАЗМЕРЫ И ВЕС

Обозначение		Размеры корпуса, мм		M	Фильтрующая	Размеры вставки, мм		
ооозначение	А	Б	В	Масса, кг	вставка	А	Б	
KKF 100	136	140	100	1,25	SKF 100	179	135	
KKF 125	166	170	125	1,52	SKF 125	202	165	
KKF 160	196	200	160	1,81	SKF 160	227	195	
KKF 200	241	245	200	2,36	SKF 200	267	240	
KKF 250	291	295	250	3,04	SKF 250	312	290	
KKF 315	356	360	315	3,94	SKF 315	374	355	


КОРПУС ФИЛЬТРА

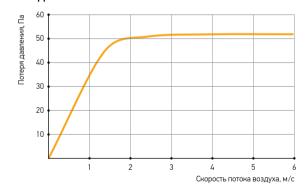


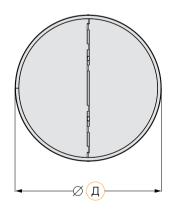
ФИЛЬТРУЮЩАЯ ВСТАВКА

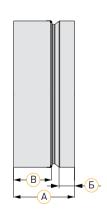
АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Датчик перепада давления DPD

ОБРАТНЫЙ КЛАПАН РКО


Обратный клапан РКО с подпружиненными лопастями обеспечивает автоматическое перекрытие воздуховодов круглого сечения при выключении вентилятора. Используется в основном в системах вытяжной вентиляции.

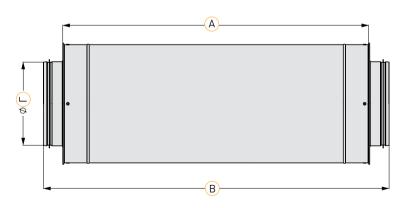

- Корпус клапана изготовлен из листовой оцинкованной стали марки 08ПС;
- Лопатки выполнены из оцинкованной стали;
- Конструкция клапана дает возможность его монтажа к воздуховодам и другим элементам системы вентиляции с помощью хомутов.

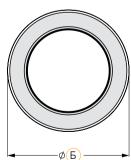

РАЗМЕРЫ И МАССА

Обозначение		Масса, кг			
Ооозначение	А	Б	В	Д	масса, кі
PKO 100	80	27	35	100	0,2
PK0 125	100	37	45	125	0,25
PKO 160	110	37	55	160	0,4
PKO 200	140	52	70	200	0,6
PK0 250	140	47	75	250	0,65
PK0 315	140	47	75	315	0,8

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ШУМОГЛУШИТЕЛЬ GHK



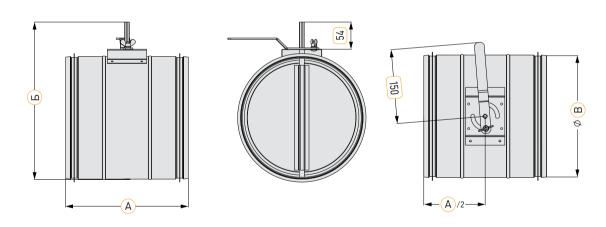

Шумоглушители GHK используются для снижения уровня шума от вентиляторов в системах с воздуховодами круглого сечения. Монтируются в любом положении.

- Корпус шумоглушителя изготавливается из листовой оцинкованной стали марки 08ПС;
- В качестве шумопоглощающего материала применяется покрытая спанбондом минеральная вата;
- Эффективное шумопоглощение в широком диапазоне частот;
- Максимальная температура перемещаемого воздуха +70°С;
- _____ Длина 600 мм и 900 мм.

ТИПОРАЗМЕРЫ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Обозначение		Разме	ры, мм		M	Шумоподавление (дБ) в диапазонах частот (Гц)							
Ооозначение	Α	Б	В	Γ	Масса, кг	63	125	250	500	1000	2000	4000	8000
GHK 100/6	615	200	730	100	4	4,5	6,3	15	20,5	30,5	32,3	30,2	16
GHK 100/9	915	200	1030	100	5,4	6,3	8,5	15	24	32,6	35,5	30,3	21,3
GHK 125/6	615	225	730	125	4,8	4,2	6	12,5	16,3	25,6	23,4	24,3	17,5
GHK 125/9	915	225	1030		6,6	5,6	9,5	17,6	29	35,4	38	34,5	20,1
GHK 160/6	615	260	730	160	5,8	3,5	5,3	11,2	15,5	23	31,6	23	16,2
GHK 160/9	915	260	1030		7,4	4	7,8	16,2	22,8	33	36,2	32,6	19,5
GHK 200/6	615	200	730	200	6,4	3,6	4	8	14	20,3	28,5	18,2	15,3
GHK 200/9	915	300	1030	200	9,2	3	6,5	12,5	18,2	28,5	33	21,6	18,3
GHK 250/6	615	350	730	250	7,8	1,5	2,3	7,3	13,5	19,3	22,6	13	11
GHK 250/9	915	350	1030	250	10,6	2,5	3	9,1	15	26,8	27,5	16,8	13,6
GHK 315/6	615	/55	730	215	10,4	0,5	1,5	3	11	14	19	8	7
GHK 315/9	915	455	1030	315	14	1,3	2,6	7,5	14,3	23,5	21	12	9

РЕГУЛИРУЮЩАЯ ЗАСЛОНКА DKR



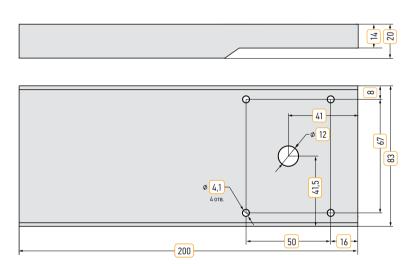
Регулирующие заслонки DKR используются для регулирования подачи воздуха и закрытия вентиляционного канала круглого сечения.

- Корпус заслонки и поворотная лопатка изготовлены из листовой оцинкованной стали;
- Лопатка снабжена резиновым уплотнителем для лучшей герметизации канала;
- Заслонка управляется вручную или с помощью электропривода. Сечение штока для монтажа привода квадрат со стороной 8 мм;
- Температура перемещаемого воздуха от −40°С до +70°С.

РАЗМЕРЫ И МАССА

Обозначение		Масса, кг			
ооозначение	A	Б	В	Macca, Ki	
DKR 100	200	170	100	0,5	
DKR 125	200	195	125	0,8	
DKR 160	200	230	160	1	
DKR 200	200	270	200	1,2	
DKR 250	260	320	250	1,8	
DKR 315	260	385	315	2,4	

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ


Привод для воздушных заслонок

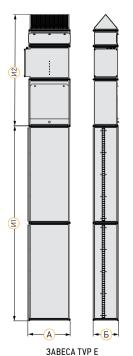
ПОДСТАВКА ПОД ПРИВОД PS

Подставка PS используется для монтажа сервоприводов на круглые канальные заслонки DKR.

■ Размеры (ШхВхД): 83×20×200 мм.

ВОЗДУШНО-ТЕПЛОВАЯ ЗАВЕСА TVP E/H

Промышленные воздушно-тепловые завесы VERTRO TVP E/H предназначены для защиты производственных помещений, логистических центров, цехов, автосервисов, гаражей, складов от попадания наружного воздуха через открытые проёмы.


- Обладают универсальной сборноразборной конструкцией на базе прямоугольного канального оборудования;
- Оснащаются заборными решетками, воздушными фильтрами КРF, электрическими воздухонагревателями NPE, вентиляторами VL, щелевыми секциями;
- В состав завес TVP Н не входят фильтр и нагреватель;

- Длина щелевых секций 1 м или 1,5 м;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Поставляются в разобранном виде.
 Сборка осуществляется на месте монтажа.
- Монтаж возможен как в вертикальном, так и в горизонтальном положении.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Тип	Характеристика		Типоразмер									
IVIII	ларактеристика	60-30	60-35	70-40 DM	70-40	80-50	90-50					
	Расход воздуха	3075 м³/ч	4170 м³/ч	4520 м³/ч	6280 м³/ч	7080 м³/ч	9100 м³/ч					
	Нагрев воздуха	Δt=15,3°C	Δt=17,0°C	Δt=21,2°C	Δt=15,0°C	Δt=13,2°C	Δt=15,5°C					
TVPE	Питание			380 В / 3 ф	азы / 50 Гц							
IVPE	Потр. мощность	17 кВт	25 кВт	32 кВт	34 кВт	34 кВт	51 кВт					
	Макс. ток	26 A	38 A	49 A	51 A	51 A	79 A					
	Уровень шума*	60 дБ(А)	62 дБ(А)	61 дБ(А)	65 дБ(А)	63 дБ(А)	69 дБ(А)					
	Расход воздуха	3075 м³/ч	4170 м³/ч	4520 м³/ч	6280 м³/ч	7080 м³/ч	9100 м³/ч					
	Питание	380 В / 3 фазы / 50 Гц										
TVP H	Потр. мощность	1,1 кВт	1,5 кВт	1,5 кВт	3 кВт	3 кВт	5,5 кВт					
	Макс. ток	2,5 A	3,3 A	3,3 A	6,1 A	6,1 A	10,9 A					
	Уровень шума*	60 дБ(А)	62 дБ(А)	61 дБ(А)	65 дБ(А)	63 дБ(А)	69 дБ(А)					

^{*} Акустическое давление для помещений со средней способностью к поглощению звука, объемом 500 м³, на расстоянии 5 м от устройства.

(с электрическим нагревателем)

ЗАВЕСА TVP H (без нагревателя)

РАЗМЕРЫ

Типоразмер завесы	60-30	60-35	70-40 DM	70-40	80-50	90-50				
А, мм	600	600	700	700	800	900				
Б, мм	300	350	400	400	500	500				
И1, м	от 2 до 5									
И2 (без нагревателя), мм	750	750	850	850	975	990				
И2 (с электрическим нагревателем), мм	1502	1622	1602	1602	1727	2003				
Ширина выходной щели, мм			35	i						

Щит управления вентилятором UM-V

Блок управления завесой UM TVP-E

Термостат FRT

ВЫБОР ТИПОРАЗМЕРА ЗАВЕСЫ

Dooyen Engöve v	Дальность действия, м										
Размер проёма, м	2	2,5	3	3,5	4	4,5	5,0				
2	-	60-30/2	60-30/2	60-35/2	70-40DM/2	70-40/2	80-50/2				
2,5	60-30/2,5	60-30/2,5	60-35/2,5	70-40DM/2,5	70-40/2,5	80-50/2,5	80-50/2,5				
3	60-30/3	60-35/3	70-40DM/3	70-40/3	80-50/3	80-50/3	90-50/3				
3,5	60-35/3,5	70-40DM/3,5	70-40/3,5	80-50/3,5	80-50/3,5	90-50/3,5	-				
4	70-40DM/4	70-40/4	80-50/4	80-50/4	90-50/4	-	-				
4,5	70-40/4,5	80-50/4,5	80-50/4,5	90-50/4,5	-	-	-				
5	80-50/5	80-50/5	90-50/5	-	-	-	-				

КОМПЛЕКТАЦИЯ, РАЗМЕРЫ И МАССА

БЛОК НАГНЕТАНИЯ

0001/7001/07/4/0	Типоразмер											
арактеристика	60-30	60-35	70-40 DM	70-40	80-50	90-50						
		ЗАБОРНАЯ	РЕШЕТКА (С ДОННОЙ ЗА	АГЛУШКОЙ)								
Тип	60-30	60-35	70-40	70-40	80-50	90-50						
Длина, мм	250	250	280	280	340	340						
Масса, кг	3	3,5	4,8	4,8	6,5	7						
		ФИЛЬТР КАССІ	ЕТНЫЙ (С ФИЛЬТРУЮЩЕ	ЕЙ ВСТАВКОЙ)*								
Тип	KPF 60-30	KPF 60-35	KPF 70-40	KPF 70-40	KPF 80-50	KPF 90-50						
Длина, мм	242	242	242	242	242	260						
	6,5	7	9	9	11,0	15,0						

ВОЗДУХОНАГРЕВАТЕЛЬ ЭЛЕКТРИЧЕСКИЙ*

Тип	NPE 60-30/15	NPE 60-35/22,5	NPE 70-40/30	NPE 70-40/30	NPE 80-50/30	NPE 90-50/45
Длина, мм	510	630	510	510	510	753
Масса, кг	16,8	22,4	27,1	27,1	31,4	49,8

B	FH.	Tν	1Л	Я.	ΓN	Р

Тип	VL 60-30/28.2D	VL 60-35/31.2D	VL 70-40/31.2DM	VL 70-40/35.2D	VL 80-50/35.2D	VL 90-50/40.2D
Длина, мм	500	500	600	600	635	650
Масса, кг	37	40	47	53	61	75

^{*}Отстутствует в завесах без нагревателя – TVP H.

БЛОК ЩЕЛЕВЫХ СЕКЦИЙ

Длина блока	Состав блока щелевых секций		Общая масса блока щелевых секций, кг					
щелевых секций, м	SCH 1M	SCH 1,5M	60-30	60-35	70-40	80-50	90-50	
2	2 шт	-	31	32	37	43	48	
2,5	1 шт	1 шт	38	40	46	53	58	
3	-	2 шт	45	47	54	63	67	
3,5	2 шт	1 шт	54	56	64	75	82	
4	1 шт	2 шт	61	63	73	85	91	
4,5	-	3 шт	68	71	81	95	101	
5	2 шт	2 шт	73	87	100	116	125	

ВОЗДУШНО-ТЕПЛОВАЯ ЗАВЕСА TVP W

Промышленные воздушно-тепловые завесы VERTRO TVP W предназначены для защиты производственных помещений, логистических центров, цехов, автосервисов, гаражей, складов от попадания наружного воздуха через открытые проёмы.

- Обладают универсальной сборноразборной конструкцией на базе прямоугольного канального оборудования;
- Оснащаются заборными решетками, воздушными фильтрами КРF, водяными воздухонагревателями NPW, вентиляторами VL, щелевыми секциями;
- Длина щелевых секций 1 м или 1,5 м;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Поставляются в разобранном виде. Сборка осуществляется на месте монтажа. Монтаж возможен как в вертикальном, так и в горизонтальном положении.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Тип	V		Типоразмер							
INII	Характеристика	60-30	60-35	70-40 DM	70-40	80-50	90-50			
	Расход воздуха	3075 м³/ч	4170 м³/ч	4520 м³/ч	6280 м³/ч	7080 м³/ч	9100 м³/ч			
	Нагрев воздуха	см. таблицы "Теплотехнические характеристики"								
	Питание	380 В / 3 фазы / 50 Гц								
	Потр. мощность	1,1 кВт	1,5 кВт	1,5 кВт	3 кВт	3 кВт	5,5 кВт			
TVP W	Макс. ток	2,5 A	3,3 A	3,3 A	6,1 A	6,1 A	10,9 A			
IVPW	Макс. темп. воды	170°C	170°C	170°C	170°C	170°C	170°C			
	Макс. давление воды	1,5 МПа	1,5 МПа	1,5 МПа	1,5 МПа	1,5 МПа	1,5 МПа			
	Заправочный объем	1,5 л	1,7 л	2,2 л	2,2 л	3,2 л	3,5 л			
	Присоед. патрубки	1"	1"	1"	1"	1"	1"			
	Уровень шума*	60 дБ(А)	62 дБ(А)	61 дБ(А)	65 дБ(А)	63 дБ(А)	69 дБ(А)			

^{*} Акустическое давление для помещений со средней способностью к поглощению звука, объемом 500 м³, на расстоянии 5 м от устройства.

РАЗМЕРЫ

Типоразмер завесы	60-30	60-35	70-40 DM	70-40	80-50	90-50		
А, мм	600	600	700	700	800	900		
Б, мм	300	350	400	400	500	500		
И1, м	от 2 до 5							
И2 (с водяным нагревателем), мм	1156	1156	1256	1256	1381	1414		
Ширина выходной щели, мм	35							

ЗАВЕСА TVP W (с водяным нагревателем)

Блок управления завесой UM TVP-W

Термостат ERT

Насос циркуляционный RS, A 101

КОМПЛЕКТАЦИЯ, РАЗМЕРЫ И МАССА БЛОК НАГНЕТАНИЯ

Vanautanuatuua		Типоразмер								
Карактеристика	60-30	60-35	70-40 DM	70-40	80-50	90-50				
		04500045	DELUETUA (O FOLULOÑ O	-EBVILLION)						
		1	РЕШЕТКА (С ДОННОЙ ЗА		I					
Тип	60-30	60-35	70-40	70-40	80-50	90-50				
Длина, мм	250	250	280	280	340	340				
Масса, кг	3	3,5	4,8	4,8	6,5	7				
		ФИЛЬТР КАСС	ЕТНЫЙ (С ФИЛЬТРУЮЩІ	ЕЙ ВСТАВКОЙ)						
Тип	KPF 60-30	KPF 60-35	KPF 70-40	KPF 70-40	KPF 80-50	KPF 90-50				
Длина, мм	242	242	242	242	242	260				
Масса, кг	6,5	7	9	9	11	15				
		В03Д	УХОНАГРЕВАТЕЛЬ ВОД	ЙОНГ						
Тип	NPW 60-30/2	NPW 60-30/2	NPW 70-40/2	NPW 70-40/2	NPW 80-50/2	NPW 90-50/2				
Длина, мм	150	150	150	150	150	150				
Масса, кг	7,8	8,8	10,4	10,4	13,4	15,5				
			ВЕНТИЛЯТОР							
Тип	VL 60-30/28.2D	VL 60-35/31.2D	VL 70-40/31.2DM	VL 70-40/35.2D	VL 80-50/35.2D	VL 90-50/40.21				
Длина, мм	500	500	600	600	635	650				
Масса, кг	37	40	47	53	61	75				

ВЫБОР ТИПОРАЗМЕРА ЗАВЕСЫ

D	Дальность действия, м								
Размер проёма, м	2	2,5	3	3,5	4	4,5	5,0		
2	-	60-30/2	60-30/2	60-35/2	70-40DM/2	70-40/2	80-50/2		
2,5	60-30/2,5	60-30/2,5	60-35/2,5	70-40DM/2,5	70-40/2,5	80-50/2,5	80-50/2,5		
3	60-30/3	60-35/3	70-40DM/3	70-40/3	80-50/3	80-50/3	90-50/3		
3,5	60-35/3,5	70-40DM/3,5	70-40/3,5	80-50/3,5	80-50/3,5	90-50/3,5	-		
4	70-40DM/4	70-40/4	80-50/4	80-50/4	90-50/4	-	-		
4,5	70-40/4,5	80-50/4,5	80-50/4,5	90-50/4,5	-	-	-		
5	80-50/5	80-50/5	90-50/5	-	-	-	-		

БЛОК ЩЕЛЕВЫХ СЕКЦИЙ

Длина блока	Состав блока щелевых секций		Общая масса блока щелевых секций, кг						
щелевых секций, м	SCH 1M	SCH 1,5M	60-30	60-35	70-40	80-50	90-50		
2	2 шт	-	31	32	37	43	48		
2,5	1 шт	1 шт	38	40	46	53	58		
3	-	2 шт	45	47	54	63	67		
3,5	2 шт	1 шт	54	56	64	75	82		
4	1 шт	2 шт	61	63	73	85	91		
4,5	-	3 шт	68	71	81	95	101		
5	2 шт	2 шт	73	87	100	116	125		

ТЕПЛОТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ TVP W

TVP 60-30 W2

T1/T2=150/70						
tвх, °С	V, м³/ч	Qт, кВт	L, м ³ /ч	ΔР, кПа	te	

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	3075	33,1	0,37	0,50	31,2
5	3075	31,1	0,35	0,45	34,3
10	3075	29,1	0,33	0,40	37,2
15	3075	26,9	0,30	0,35	40,3
20	3075	24,7	0,28	0,30	43,3

T1/T2=130/70								
tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	∆Р, кПа	tвых, °С			
0	3075	31,9	0,47	0,80	30,0			
5	3075	29,9	0,44	0,71	33,1			
10	3075	27,9	0,41	0,27	36,4			
15	3075	25,8	0,38	0,54	39,2			
20	3075	23.6	0.35	N 47	42.3			

	T1/T2=110/70								
tвx, °C	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С				
0	3075	30,8	0,68	1,58	29,0				
5	3075	28,8	0,64	1,40	32,1				
10	3075	26,8	0,60	1,24	35,2				
15	3075	24,7	0,55	1,07	38,2				
20	3075	22,6	0,50	0,91	41,3				

T1/T2=95/70								
tвх, °С	tвх, °C V, м³/ч Qт, кВт L, м³/ч ΔР, кПа tвых, °							
0	3075	30,1	1,06	3,60	28,4			
5	3075	28,1	0,99	3,20	31,4			
10	3075	26,1	0,92	2,80	34,5			
15	3075	24,0	0,85	2,40	37,6			
20	3075	21,9	0,78	2,03	40,7			

	T1/T2=80/60								
tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	t вых, °С				
0	3075	25,4	1,12	4,09	24,0				
5	3075	23,4	1,02	3,53	27,0				
10	3075	21,4	0,94	3,01	30,1				
15	3075	19,3	0,85	2,49	33,2				
20	3075	17,2	0,76	2,02	36,3				

T1/T2=60/40						
tвx, °C	V, м³/ч	Qт, кВт	L, м³/ч	∆Р, кПа	tвых, °С	
0	3075	16,3	0,71	1,74	15,3	
5	3075	14,2	0,62	1,52	18,4	
10	3075	12,1	0,53	1,15	21,4	
15	3075	9,92	0,43	0,81	24,3	
20	3075	7,61	0,33	0,51	27,2	

TVP 60-35 W2

T1/T2=150/	70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	4170	42,1	0,47	0,62	29,8
5	4170	39,5	0,44	0,55	32,4
10	4170	37,0	0,41	0,49	35,5
15	4170	34,2	0,38	0,43	38,7
20	4170	31,4	0,35	0,37	41,8

T1/T2=130/70							
	tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С	
	0	4170	40,5	0,60	0,99	28,2	
	5	4170	38,0	0,57	0,88	31,4	
	10	4170	35,5	0,53	0,78	34,5	
	15	4170	32,8	0,49	0,68	37,7	
	20	4170	30,0	0,45	0,58	40,9	

T1/T2=110/70						
tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С	
0	4170	39,2	0,87	1,97	27,2	
5	4170	36,7	0,81	1,75	30,4	
10	4170	34,3	0,76	1,54	33,6	
15	4170	31,4	0,70	1,33	36,8	
20	4170	28,7	0,64	1,13	40,0	

T1/T2=95/70						
tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С	
0	4170	38,3	1,35	4,51	26,6	
5	4170	35,8	1,27	3,99	29,8	
10	4170	33,3	1,17	3,49	33,0	
15	4170	30,6	1,08	3,00	36,2	
20	4170	27,9	0,99	2,54	39,4	

T1/T2=80/60						
tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С	
0	4170	32,3	1,42	5,11	22,5	
5	4170	29,8	1,31	4,41	25,7	
10	4170	27,3	1,20	3,75	28,9	
15	4170	24,6	1,08	3,11	32,1	
20	4170	21,9	0,96	2,52	35,3	

T1/T2=60/40						
	tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	∆Р, кПа	tвых, °С
	0	4170	20,7	0,90	2,41	14,4
	5	4170	18,1	0,79	1,89	17,6
	10	4170	15,5	0,67	1,43	20,7
	15	4170	12,7	0,55	1,00	23,8
	20	4170	9,78	0,43	0,63	26,8

tвх — температура воздуха на входе; V — расход воздуха;

Qт – тепловая мощность; L – расход воды;

ΔP – потери давления воды; tвых – температура воздуха на выходе;

T1 — температура воды на входе; T2 — температура воды на выходе.

TVP 70-40DM W2

	T1/T2=150/70

11/12-130/70					
tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	4520	52,0	0,58	0,82	33,4
5	4520	49,0	0,55	0,73	36,3
10	4520	45,9	0,51	0,65	39,3
15	4520	42,7	0,48	0,57	42,3
20	4520	39,3	0,44	0,50	45,2

T1/T2=130/70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	4520	49,7	0,74	1,29	31,9
5	4520	46,7	0,69	1,15	34,9
10	4520	43,7	0,65	1,02	37,9
15	4520	40,5	0,60	0,89	40,9
20	4520	37,2	0,55	0,77	43,9

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	4520	47,6	1,05	2,52	30,5
5	4520	44,6	0,99	2,24	33,5
10	4520	41,6	0,92	1,98	36,5
15	4520	38,5	0,85	1,72	39,6
20	4520	35,2	0,78	1,47	42,6

T1/T2=95/70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	4520	46,1	1,62	5,67	29,6
5	4520	43,1	1,52	5,03	32,6
10	4520	40,0	1,41	4,39	35,7
15	4520	37,0	1,31	3,81	38,7
20	4520	33,8	1,19	3,23	41,7

T1/T2=80/60

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	4520	39,0	1,71	6,44	25,0
5	4520	36,0	1,58	5,57	28,0
10	4520	33,0	1,45	4,76	31,0
15	4520	29,8	1,31	3,96	34,1
20	4520	26,6	1,17	3,23	37,1

T1/T2=60/40

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	4520	25,4	1,10	3,12	16,3
5	4520	22,3	0,97	2,48	19,3
10	4520	19,2	0,84	1,90	22,2
15	4520	15,9	0,70	1,36	25,2
20	4520	12,6	0,55	0,90	28,1

TVP 70-40 W2

T1/T2=150/70

	tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
ĺ	0	6280	62,7	0,70	1,14	29,0
	5	6280	59,0	0,66	1,03	32,2
	10	6280	55,4	0,62	0,92	35,4
	15	6280	51,4	0,58	0,80	38,7
	20	6280	47,4	0,53	0,69	41,9

T1/T2=130/70	
11/12-130/70	

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	6280	60,0	0,89	1,81	27,7
5	6280	56,4	0,84	1,62	31,0
10	6280	52,8	0,78	1,44	34,2
15	6280	48,9	0,73	1,25	37,5
20	6280	44,9	0,67	1,07	40,8

T1/T2=110/70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	∆Р, кПа	tвых, °С
0	6280	57,5	1,28	3,56	26,6
5	6280	53,9	1,20	3,17	29,8
10	6280	50,3	1,12	2,79	33,1
15	6280	46,5	1,03	2,42	36,4
20	6280	42,6	0,94	2,06	39,7

T1/T2=95/70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	6280	55,8	1,97	8,05	25,8
5	6280	52,2	1,84	7,13	29,1
10	6280	48,6	1,72	6,26	32,3
15	6280	44,8	1,58	5,39	35,6
20	6280	40,9	1,44	4,57	38,9

T1/T2=80/60

	11/12 00/00					
Ī	tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	∆Р, кПа	tвых, °С
Ī	0	6280	47,2	2,08	9,14	21,8
	5	6280	43,6	1,92	7,90	25,1
	10	6280	40,0	1,76	6,74	28,3
Ī	15	6280	36,1	1,59	5,61	31,6
	20	6280	32,3	1,42	4,56	34,9

T1/T2=60/40

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С	
0	6280	30,7	1,34	4,41	14,2	
5	6280	27,0	1,18	3,50	17,5	
10	6280	23,3	1,01	2,67	20,7	
15	6280	19,3	0,84	1,92	23,9	
20	6280	15,3	0,67	1,27	27,1	

tвх — температура воздуха на входе; V — расход воздуха; Qт — тепловая мощность; L — расход воды; ΔP – потери давления воды; tвых – температура воздуха на выходе; T1 — температура воды на входе; T2 — температура воды на выходе.

TVP 80-50 W2

V, м³/ч

7080

7080

7080

7080

7080

tвx, °C

0

5

10

15

20

80,8

76,2

71,7

66,7

61,7

T1/T2=150/70 Qт, кВт ΔР, кПа L, м³/ч 0,90

0,85

0,80

0,75

0,69

1,17

1,05

0,94

0,83

0,72

tвых, °С	
33,1	
36,1	
39,2	
42,2	
/ 5 2	

T1/T2=130/70

tвx, °C	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	7080	76,9	1,14	1,82	31,5
5	7080	72,4	1,08	1,64	34,6
10	7080	67,9	1,01	1,46	37,6
15	7080	63,0	0,94	1,28	40,7
20	7080	58,1	0,86	1,10	43,8

T1/T2=110/70

		,	,			
tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	∆Р, кПа	tвых, °С	
0	7080	73,2	1,62	3,53	30,0	
5	7080	68,7	1,52	3,15	33,1	
10	7080	64,2	1,42	2,79	36,1	
15	7080	59,4	1,32	2,42	39,3	
20	7080	54.6	1.21	2.08	42.4	

T1/T2=95/70

tвx, °C	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	7080	70,6	2,49	7,87	28,9
5	7080	66,1	2,34	6,99	32,0
10	7080	61,1	2,18	6,15	35,1
15	7080	56,8	2,01	5,31	38,2
20	7080	52,0	1,84	4,52	41,3

T1/T2=80/60

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	7080	59,7	2,62	8,94	24,5
5	7080	55,2	2,42	7,75	27,5
10	7080	50,7	2,22	6,64	30,6
15	7080	45,9	2,02	5,55	33,7
20	7080	41,0	1,80	4,54	36,8

T1/T2=60/40

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	7080	39,3	1,71	4,44	16,1
5	7080	34,7	1,51	3,55	19,2
10	7080	30,0	1,31	2,74	22,2
15	7080	25,2	1,10	2,00	25,3
20	7080	20,2	0,88	1,35	28,3

TVP 90-50 W2

T1/T2=150/70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	9100	100,4	1,12	1,84	32,0
5	9100	94,9	1,06	1,66	35,2
10	9100	89,3	1,00	1,49	38,3
15	9100	83,3	0,93	1,31	41,5
20	9100	77,2	0,86	1,15	44,6

T1/T2=130/70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	9100	95,4	1,42	2,86	30,4
5	9100	89,9	1,34	2,57	33,6
10	9100	84,4	1,25	2,30	36,7
15	9100	78,4	1,17	2,04	39,9
20	9100	72,4	1,08	1,74	43,1

T1/T2=110/70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	∆Р, кПа	tвых, °С
0	9100	90,4	2,00	5,51	28,8
5	9100	84,9	1,88	4,92	32,0
10	9100	79,5	1,76	4,36	35,2
15	9100	73,6	1,63	3,80	38,4
20	9100	67,7	1,50	3,26	41,6

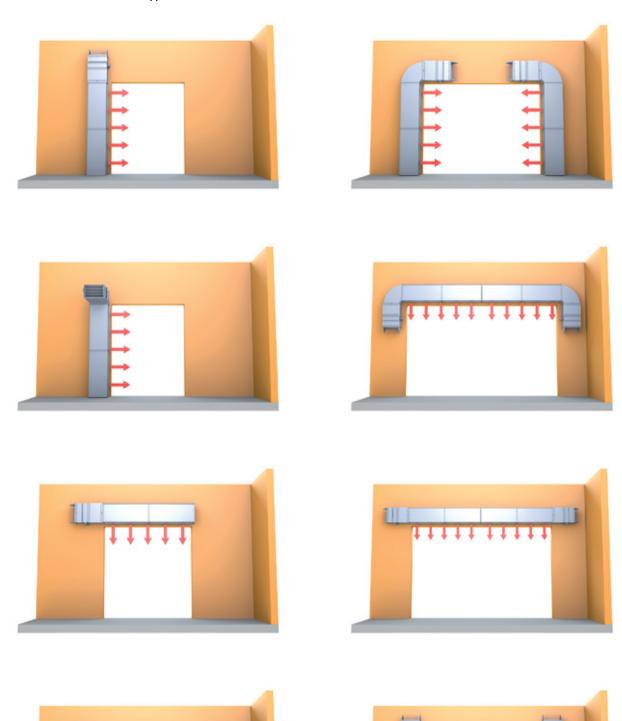
T1/T2=95/70

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	9100	86,8	3,07	12,21	27,7
5	9100	81,4	2,88	10,85	30,1
10	9100	75,9	2,68	9,56	34,0
15	9100	70,1	2,48	8,27	37,3
20	9100	64,2	2,27	7,05	40,5

T1/T2=80/60

tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	∆Р, кПа	tвых, °С
0	9100	73,5	3,23	13,88	23,4
5	9100	68,0	2,99	12,04	26,6
10	9100	62,5	2,75	10,33	29,8
15	9100	56,6	2,49	8,64	33,0
20	9100	50,7	2,23	7,08	36,2

T1/T2=60/40


tвх, °С	V, м³/ч	Qт, кВт	L, м³/ч	ΔР, кПа	tвых, °С
0	9100	48,8	2,13	6,96	15,6
5	9100	43,2	1,88	5,59	18,7
10	9100	37,5	1,63	4,34	21,9
15	9100	31,6	1,38	3,20	25,0
20	9100	25,6	1,12	2,20	28,2

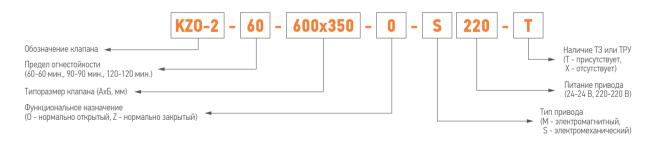
tвх — температура воздуха на входе; V — расход воздуха;

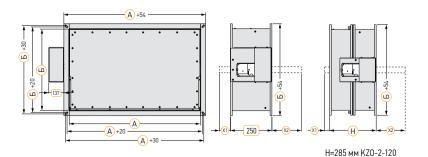
Qт – тепловая мощность; L – расход воды;

ΔР – потери давления воды; tвых – температура воздуха на выходе; T1 – температура воды на входе; Т2 – температура воды на выходе.

ВАРИАНТЫ МОНТАЖА ВОЗДУШНО-ТЕПЛОВЫХ ЗАВЕС TVP

ПРОТИВОПОЖАРНЫЙ КЛАПАН КZO-2




- Корпус клапана изготавливается из оцинкованной стали;
- Заслонка из огнестойкого стекломагнезита;
- В зависимости от предела огнестойкости применяется заслонка разной толщины;
- По периметру заслонки термоактивный уплотнитель, который расширяется под действием высоких температур, обеспечивая герметичность клапана;
- Приводы устанавливаются снаружи корпуса.

Противопожарные клапаны KZO-2 HO препятствуют распространению огня и дымовых газов по воздуховодам в системах общеобменной вентиляции, а KZO-2 H3 обеспечивают отвод продуктов горения и подвод свежего воздуха в системах противодымной вентиляции и подпора воздуха.

ХАРАКТЕРИСТИКИ ПРИВОДОВ

Тип пр	ивода	Электромагнитный	Электромеханический
Принцип срабат	ывания привода	подача напряжения на электромагнит или разрыв цепи ТЗ в НО клапане	отключение питающего напряжения или срабатывание ТРУ в НО клапане
Способ перевода заслонки	в рабочее положение	 Автоматический по сигналу пожарной автоматики или от ТЗ в НО клапане; Дистанционный с пульта управления; Вручную от кнопки на клеммной коробке. 	Автоматический по сигналу пожарной автоматики или от ТРУ в НО клапане; Дистанционный с пульта управления Вручную от кнопки на ТРУ.
	в исходное положение	вручную	дистанционный с пульта управления
Механизм	в рабочее положение	возвратная пружина	возвратная пружина
перевода заслонки	в исходное положение	-	сервопривод
Время	в рабочее положение	2 сек	70 c
поворота заслонки	в исходное положение	-	20 c
Питание	привода	=12B, =24B, ~220B	=24B, ~24B, ~220B
Потребляемая мо	ощность привода	100-220 Вт	5 Вт
Степень защ	иты привода	IP 10 (УХЛ 4)	IP 54

06 ПРОТИВОПОЖАРНАЯ ВЕНТИЛЯЦИЯ

ВЫЛЕТ ЗАСЛОНКИ КЛАПАНОВ КZO-2-60, KZO-2-90 И KZO-2-120 ЗА ГАБАРИТ КОРПУСА, ММ

Вылет									Pa	ізмер Б, і	мм								
рылет	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
X1	нет	нет	нет	нет	нет	нет	нет	11,5	36,5	61,5	86,5	111,5	136,5	161,5	186,5	211,5	236,5	261,5	286,5
X2	нет	18,5	43,5	68,5	93,5	118,5	143,5	168,5	193,5	218,5	243,5	268,5	293,5	318,5	343,5	368,5	393,5	418,5	443,5

																		Pa	зме	р Б, і	ММ																	
	100	150	200	250	300	320	700	450	200	550	009	920	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700	1750	1800	1850	1900	1950
2000	0,119	0,219	0,318	0,418	0,517	0,617	0,716	0,816	0,915	1,015	1,114	1,214	1,313	1,413	1,512	1,612	1,711	1,811	1,910	2,010	2,109	2,209	2,308	2,408	2,507	2,607	2,706	2,806	2,905	3,005	3,104	3,204	3,303	3,403	3,502	3,602	3,701	3,801
200	0,116	0,213	0,310	0,397 0,407 0,418	0,504	0,601	869'0 089'0	0,795		0,989 1,015		1,183			1,474	1,571	1,668	1,765	1,862	1,959	2,056	2,153	2,250 2,308	2,287 2,347 2,408	2,381 2,444 2,507	2,541 2,607	2,638	2,735	2,832	2,929	3,026	3,123	3,220 3,303	3,317	3,414 3,502	3,511	3,608	3,705
	0,113	0,208	0,302	0,397	0,491	985'0	089'0	0,775	0,869 0,892	996'0	1,058	1,153	1,247	1,342	1,436	1,531	1,625	1,720	1,814	1,909	2,003	2,098	2,192	2,287	2,381	2,476	2,570	2,665	2,759	2,854	2,948	3,043	3,137		3,326	3,421		
1030 1700	0,110 0,113	0,202	0,294	986,0	0,478	0,570	299'0	0,754	978'0	0,938	1,030	1,122	1,214 1,247 1,280	1,306	1,398	1,490	1,582	1,674	1,766	1,858	1,950	2,042	2,134	2,226	2,318	2,410	2,502	2,594	2,686	2,778	2,870	2,962	3,054	3,146 3,232	3,238	3,330		
0001		0,197	0,286	0,376	0,465	0,555	779'0	0,734	0,823	0,913	1,002	1,092		1,271	1,360	1,450	1,539	1,629	1,718	1,808	1,897	1,987	2,076	2,166	2,255	2,345	7,434	2,524	2,613	2,703	2,792	2,882	2,971 3,054 3,137	3,061				
06/1	0,104	161,0	3,278	3985	0,452	0,539	9799	0,713	008'0	788,0	72.6'0	1,00,1	1,148	1,235	1,322	605'1	9671	1,583	0/9'1	1,757	7778'1	1,931	2,018	2,105	2,192	2,279	7,366	2,453	2,540	2,627	2,714	2,801	2,888	2,975				
90/1	0,089 0,092 0,095 0,098 0,101 0,104 0,107	0,186	0,270 0,278 0,286	0,355	0,374 0,387 0,400 0,413 0,426 0,439 0,452 0,465 0,478 0,491	1,524	809'0	269'0	0,685 0,708 0,731 0,754 0,777 0,800 0,823 0,846	1,862	976'0	1,031	1115	. 002'1	787	1369	1,152 1,195 1,238 1,281 1,324 1,367 1,410 1,453 1,496 1,539 1,582 1,625	1,538	1,286 1,334 1,382 1,430 1,478 1,526 1,574 1,622 1,670 1,718 1,766 1,814 1,862	1,707	1,791	9/8'1	096'1	1,621 1,682 1,742 1,803 1,863 1,924 1,984 2,045 2,105 2,166 2,226	1,688 1,751 1,814 1,877 1,940 2,003 2,066 2,129 2,192 2,255 2,318	2,017 2,083 2,148 2,214 2,279 2,345 2,410 2,476	2,094 2,162 2,230 2,298 2,366 2,434 2,502 2,570 2,638 2,706	2,101 2,171 2,242 2,312 2,383 2,453 2,524 2,594 2,665 2,735 2,806	2,248 2,321 2,394 2,467 2,540 2,613 2,686 2,759 2,832 2,905	2,325 2,401 2,476 2,552 2,627 2,703 2,778 2,854 2,929 3,005	2,558 2,636 2,714 2,792 2,870 2,948 3,026 3,104	2,721 2,801 2,882 2,962 3,043 3,123 3,204						
000	860'0	0,180		1,344	977/0	1,508	065'0	0,672	1,754	9836	0,918	00'1	1,082	1,164	. 977'1	1,328	. 017'1	1,492	1,574	959'1	1,738	1,820	1,902	1,984	5,066	2,148	2,230	2,312	7,394	2,476	2,558	2,640						
000	3000	0,175	0,254 0,262),334 (0,413 (0,493) 2/2(1,652	1,731	0,811	068'0	1,970	670'1	. 671'1	,208	,288	. 292'1	. 777	, 975'	909'1	. 589'1	. 99/1	7778	. 776'1	2,003	2,083	2,162	2,242	321	2,401	.,	.,						
000 000 000	7,000	0,169) 7770)323 (005'0) ////(),554 () 189'(80,00	1,785),862) 686'0	910'1	. 660'	1,170	1,247	. 324	107'1	8/7'	. 999	. 789'1	. 60/1	1,786	. 698'1	05%1	2,017	7,00%	2,171	2,248	2,325								
nncı	680'(0,164	0,238 0,246),313 (387 (797),536	1119'0	3,685	09/(1834	606'0	. 883	058	,132	,207	182	326	064,	202	. 6/2	, 459,	,728	.803	. 228	,952	9700	101,2	2,175									
1430	980'	0,158	0,230	305	374 (955) 218 (065'0	799'(1,734	908'() 878,	0,950	1022	760	991'	, 238	,310	382	754,	,526	. 865'	. 0/9'	.742	,814	988	1,958 2,026	2,030										
	0 880'(0,153 () 225 (1,292 (198") 431) 200 (),570 () 689'(0,709	0 877,0	9,848	0,917	1,987	,056	1,126	1,195	,265	334	707	7.73	543	1,612	1,682	1,751	1,821 1,886 1,952	1,890											
1330 1400	080	0,147	0,214 0,222	1,281	0,335 0,348 0,361	1,415	1,482	0 675'	0 919'(0 889'	,750	0 /18'	788	1951	1 810,	1 985	152	1 12	,286	353	,420	1 184	,554	129'	1 889'	1,755	_											
1300	0 ///01	0,142	0,206	1/2/	335	007	0 797	0 625') 263'	0 859'	0 22/) /8/	0 158') 916'	1,980	,045		174	,238	303	1 296,	1 725	1 965'	199	1,625	_												
l nc7	07/4	0,136	0,198	7,260	322	384	0 9777	2086,	570 0	0 289	0 769'	756	918	088,	1942 C	00,	1 990	128	190	,252	1,314 1,367 1,420 1,473 1,526 1,579 1,632 1,685 1,738 1,791 1,844 1,897 1,950 2,003 2,056	1,376 1,432 1,487 1,543 1,598 1,654 1,709 1,765 1,820 1,876 1,931 1,987 2,042 2,098 2,153 2,209	1,438 1,496 1,554 1,612 1,670 1,728 1,786 1,844 1,902 1,960 2,018 2,076 2,134 2,192	1,500 1,561														
1200 1230	0 1/0)	0,131	0,190	,250 0	309 0	0 696'	,428 0	0 887	,547	0 209	0 999'	726 0	785	0 578	0 706'	1 796	1023	1.083 1,128 1,174 1,219 1,265 1,310 1,356 1,401 1,447 1,492 1,538 1,583 1,629 1,674 1,720 1,765	142	1,252 1,303 1,353 1,404 1,454 1,505 1,555 1,606 1,656 1,707 1,757 1,808 1,858 1,909 1,959	1,261	1,321	1,380	_														
	3 890'	0,125	0,182	239 0	7396	353 0	0 017	0 /95'	,524 0	1881	0 869,	0 969'	,752 0	0 608'	0 998'	923 0	1,980		1094	1,151	1,208	1,265	_															
- B	0,065 0,068 0,071 0,074 0,077 0,080 0,083 0,086	0,120	0 7/1'	0,197 0,208 0,218 0,229 0,239 0,250 0,260 0,271 0,281 0,292 0,302 0,313 0,323 0,334 0,344 0,355 0,365 0,376 0,386	0,218 0,231 0,244 0,257 0,270 0,283 0,296 0,309 0,322	0.245 0.260 0.276 0.291 0.307 0.322 0.338 0.353 0.369 0.364 0.400 0.415 0.431 0.446 0.462 0.477 0.493 0.508 0.524 0.539 0.555 0.570 0.586	0348 0246 0260 0300 0300 0330 0338 0336 0374 0392 0410 0428 0446 0466 0468 0500 0518 0538 0538 0554 0572 0590 0608 0608 0604 0664 0664	0.283 0.384 0.384 0.385 0.385 0.486 0.486 0.486 0.487 0.487 0.489 0.589 0.589 0.589 0.590	0,409 0,432 0,455 0,478 0,501 0,524 0,547 0,570 0,593 0,616 0,639 0,662	0,403 0,428 0,454 0,479 0,505 0,530 0,556 0,581 0,607 0,632 0,658 0,683 0,709 0,734 0,700 0,785 0,811 0,836 0,862 0,887 0,913 0,938	0414 0442 0470 0480 0556 0554 0552 0650 0658 0660 0684 0684 0772 0750 0778 0506 0854 <mark>0562 0690 0996 0996 0996 0996 0996 0996 09</mark>	0.512 0.542 0.573 0.604 0.634 0.665 0.645 0.656 0.756 0.756 0.756 0.819 0.819 0.818 0.818 0.809 0	0.554 0.587 0.659 0.653 0.665 0.779 0.752 0.785 0.818 0.851 0.840 0.770 0.950	0525 0.561 0.596 0.532 0.667 0.703 0.703 0.703 0.704 0.809 0.806 0.806 0.906 0.907 0.907 0.807 0	0,600 0,638 0,676 0,714 0,752 0,790 0,828 0,866 0,904 0,942 0,980 1,1018 1,056 1,1014 1,1018 1,1014 1,1014 1,1018 1,1014 1,1018 1,1014 1,1014 1,1018 1,1014	0721 0761 0802 0802 0803 0903 0903 0904 1,0	0,851 0,894 0,937 0,980 1,023 1,066 1,109	0,992 1,037	0,998 1,046 1,094 1,142 1,190 1,238		1,155	_																
000		0,114 0	0,166 0,174	,218 0	270 0	322 0	374 0	426 0	478 0	230 0	285	9,634	0 989	738 0	062	842 0	0 768'	0,946	,1 866	1,050 1,101																		
0611 0011 0601 0001	0,059 0,062	0,109 0	0,158 0	208 0	257 0	307 0	356 0	0 907	455 0	505	927 0	907	653 0	703 0	752 0,	802 0	851	0,901	0,950	-																		
06 /		0,103 0	0,150 0	197 0	244 0	291 0	338 0	385 0	432 0	7.29	526 0	573 0	620 0,	0 299	714 0	761		0,855 0	0																			
, 00,	023	0'088 0'	0,142 0,	0,187 0	231 0,	276 0	320 0,	365 0,	409 0,	454 0	70 867	543 0,	587 0,	632 0,	9/9	721 0	0,765 0,808	ď																				
000	0,041 0,044 0,047 0,050 0,053 0,056	0,092 0,	0,134 0,	0,176 0,	218 0,	260 0,	302 0,	344 0,	386 0,	428 0,	470 0,	512 0,	554 0,	969	638 0,	0'0890 0'	0																					
000	0 ///	0,087	0,126 0,	0,166 0,	0,205 0,	245 0,	284 0,	324 0,	0,340 0,363 0,386	703	442 0,	482 0,	0,521 0,	261 0,	900 0'	ŏ																						
0 00 /	10 77/0	0,081	0,118 0,	0,155 0,	0,192 0;		266 0,	303 0,	340 0,	0,377 0,	717 0'	0,421 0,451 0,482	0,488 0,	525 0,	ŏ																							
) (no./	741	0,076 0,	0,110 0,	0,145 0,	0,179 0,	0,214 0,229	748 0,	283	0,317 0,3	0,352 0,	0'386' 0'	421 0,	0,455 0,	0												-												
000	10 86	0,070 0,1	0,102 0,	0,134 0,	0,166 0,	0,198 0,3	30 0%	297	594 0,	0,326 0,3	28 0,	0'390 0'	ŏ																									
o 00	0,035 0,038	0)(2	0,094 0,7	,124 0,	153 0,	,183 0,	0,212 0,230	242 0,	271 0,	301 0,3	0,330 0,358	Ö																										
000	132 0,0	129 0,0	0'0 981	13 0,1	0,140 0,1	67 0,1		0,180 0,201 0,221 0,242 0,262	0,225 0,248 0,271 0,294	0,275 0,3	00																											
2000	129 0,0	0'0 55	0,0 871	03	27 0,1	0,121 0,136 0,152 0,167 0,	0,158 0,176 0,194	107	25 0,2	0,2																-												
_	26 0,0	0'0 87	70 0,0	92 0,1	14 0,1	36 0,1	58 0,1	80 0,2	0,2																													
400 430	23 0,0	43 0,0	62 0,0	82 0,0	10,10	21 0,1	0,140 0,1	0,																		_												
_	20 000	37 0,0	24 0,0	71 0,0	38 0,10	35 0,12	0,12																															
0000	17 0,02	32 0,03	0,030 0,038 0,046 0,054 0,062 0,070 0,078 0,086	0,050 0,061 0,071 0,082 0,092 0,103 0,113 0,	0,075 0,088 0,101 0,114 0,127	0,105																																
000	14 0,0	36 0,03	38 0,0	50 0,0	0,0																																	
200	11 0,0	1 0,02	30 000	0,0																				_								_						
7 200	0,005 0,008 0,011 0,014 0,017 0,020 0,023 0,026 0,029 0,032	0,015 0,021 0,026 0,032 0,037 0,043 0,048 0,054 0,059 0,065	0,03																							_												
001 001	0,00	0,01																																				

																			Pa	зме	р Б, і	ММ																	
		100	150	200	250	300	320	400	450	200	550	009	920	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700	1750	1800	1850	1900	1950
	2000	0,100	0,199	0,299	0,398	0,498	0,597	269'0	964'0	968'0	0,995	1,095	1,194	1,294	1,393	1,493	1,592	1,692	1,791	1,891	1,990	2,090	2,189	2,289	2,388	2,488	2,587	2,687	2,786	2,886	2,985	3,085	3,184	3,284	3,383	3,483	3,582	3,682	3,781
	1950	0,097	0,194	0,291	0,388	0,485	0,582	6/9'0	97.20	0,873	0,970	1,067	1,164	1,261	1,358	1,455	1,552	1,649	1,746	1,843	1,940	2,037	2,134	2,231	2,328	2,425	2,522	2,619	2,716	2,813	2,910	3,007	3,104	3,201	3,298	3,395	3,492	3,589	3,686 3,781
	1900	0,095	0,189	0,284	0,378	0,473	0,567	0,662	0,756	0,851	0,945	1,040	1,134	1,229	1,323	1,418	1,512	1,607	1,701	1,796	1,890	1,985	2,079	2,174	2,268	2,363	2,457	2,552	2,646	2,741	2,835	2,930	3,024	3,119	3,213	3,308	3,402		
	1850	0,092	0,184	0,276	0,368	0,460	0,552	0,644	0,736	0,828	0,920	1,012	1,104	1,196	1,288	1,380	1,472	1,564	1,656	1,748	1,840	1,932	2,024	2,116	2,208	2,300	2,392	2,484	2,576	2,668	2,760	2,852	2,944	3,036	3,128	3,220	3,312		
	1800	0,000	0,179	0,269	0,358	0,448	0,537	0,627	91,716	908'0	0,895	0,985	1,074	1,164		1,343	1,432	1,522	1,611	1,701	1,790	1,880	1,969	2,059	2,148	2,238	2,327	2,417	2,506	2,596	2,685	2,775	2,864	2,954	3,043				
	1750	0,085 0,087 0,090	0,174	0,261	0,348	0,435	0,522	0,609	969'0	0,783	0,870	0,957	1,044	1,131	1,218 1,253	1,305	1,392	1,479	1,566	1,653	1,740	1,827	1,914	2,001	2,088	2,175		2,349		2,523	2,610	2,697	2,784	2,871	2,958				
	1700	0,085	0,169	0,254	0,338	0,423	0,507	0,592	9/9'0	0,761	0,845	0,930	1,014 1,044	1,099	1,148 1,183	1,268 1,305	1,352	1,437	1,521	1,606	1,690	1,775	1,859	1,944	2,028	2,113	2,197 2,262	2,282	2,366 2,436	2,451	2,535	2,620	2,704						
	1650	0,082	0,164	0,246	0,328	0,410	0,492	0,574	999'0	0,738	0,820	0,902	0,984	1,066	1,148	1,230	1,312	1,394	1,476	1,558	1,640	1,722	1,804	1,886	1,968	2,050	2,132	2,214	2,296	2,378	2,460	2,542	2,624						
	1600	0,080 0,082	0,159	0,239	0,318	0,398	0,477	0,557	969'0	0,716	0,795	0,875	0,954	1,034	1,113	1,193	1,272	1,352	1,431	1,511	1,590	1,670	1,749	1,829	1,908	1,988	2,067	2,147 2,214	2,226	2,306	2,385								
	1550		0,154	0,231	906,0	0,385	0,462	0,539	919'0	0,693	0,770	0,847			1,078	1,155	1,232	1,309	1,386			1,617	1,694	1,771	1,848		2,002	2,079	2,156	2,233	2,310								
	1500	0,075 0,077	0,149	0,224	0,298	0,373	0,447	0,522	965'0	1/9'0	0,745	0,820	0,894 0,924	100'1 696'0	1,043	1,118	1,192	1,267	1,341	1,416 1,463	1,490 1,540	1,565	1,639	1,714	1,788	1,863 1,925	1,937	2,012	2,086	2,161									
	1450		0,144	0,216	0,288	098'0	0,432	0,504	0,576	0,648	0,720				1,008	1,080	1,152	1,224	1,296	1,368	1,440	1,512	1,584	1,656	1,728	1,800	1,872	1,944	2,016										
	1400	0,070 0,072	0,139	0,209	0,278	0,348	0,417	0,487	925'0	0,626	0,695	0,765 0,792	0,834 0,864	0,904 0,936	0,973 1,008	1,043	1,112	1,182	1,251	1,321	1,390	1,460	1,529	1,599	1,668	1,738	1,807	1,877											
	1350	0,067	0,134	0,201	0,268	0,335	0,402	697'0	0,536	0,603	0,670	0,737	708'0	0,871	0,938	1,005	1,072	1,139	1,206	1,273	1,340	1,407	1,474	1,541	1,608	1,675	1,742												
	1300	990'0	0,129	0,194	0,258	0,323	0,387	0,452	0,516	0,581	0,645	0,710	0,774	0,839	0,903	896'0	1,032	1,097	1,161	1,226	1,290	1,355	1,419	1,484	1,548	1,613													
	1250	0,062	0,124	0,186	0,248	0,310	0,372	0,434	967'0	0,558	0,620	0,682	0,744	908'0	898'0	066'0	0,992	1,054	1,116	1,178	1,240	1,302	1,364	1,426	1,488														
	1200	0,060 0,062 0,065	0,119	0,179	0,238	0,298	0,357	0,417	9/7/0	0,536	0,595	0,655	0,714	0,774	0,833	0,893	0,952	1,012	1,071	1,131	1,190	1,250	1,309	1,369															
	1150	0,057	0,114	1/1/0	0,228	0,285	0,342	0,399	0,456	0,513	0,570	0,627	0,684	0,741	0,798	0,855	0,912	696'0	1,026	1,083	1,140	1,197	1,254																
ı	1100	0,055	0,109	0,164	0,218	0,273	0,327	0,382	0,436	0,491	0,545	009'0	0,654	602'0	0,763	0,818	0,872	0,927	0,981	1,036	1,090	1,145																	
		0,052	0,104	0,156	0,208	0,260	0,312	0,364	0,416	0,468	0,520	0,572	0,624	9/9'0	0,728	0,780	0,832	0,884	986'0	0,988	1,040																		
Pash	1000 1050	0,050	660'0	0,149	0,198	0,248	0,297	0,347	966'0	977,0	0,495	0,545	0,594	0,644	669'0	0,743	0,792	0,842	0,891	0,941																			
	950	0,047	0,094	0,141	0,188	0,235	0,282	0,329	0,376	0,423	0,470	0,517	0,564	0,611	0,658	0,705	0,752	0,799	978'0																				
	900		0,089	0,134	0,178	0,223	0,267	0,312	0,356	0,401	0,445	0,490	0,534	0,579	0,623	899'0	0,712	0,757																					
-	820	0,042	0,084	0,126	991'0	0,210	0,252	0,294	988'0	0,378	0,420	0,462	0,504	0,546	0,588	0,630	0,672																						
	008	0,040 0,042 0,045	0,079	0,119	0,158	0,198	0,237	0,277	0,316	9326	0,395	0,435	7/7/0	0,514	0,553	0,593																							
	750	0,037	0,074	0,111	0,148	0,185	0,222	0,259	0,296	0,333	0,370	0'40	9770	0,481	0,518																								
	700	0,035	690'0	0,104	0,138	0,173	0,207	0,242	0,276	0,311	0,345	0,380	0,414	0,449																									
	920	0,032	790'0	960'0	0,128	0,160	0,192	0,224	0,256	0,288	0,320	0,352	0,384																										
	009	0,030	0,059	680'0	0,118	0,148	0,177	0,207	0,236	0,266	0,295	0,325																											
	220	0,027	0,054	0,081	0,108	0,135	0,162	0,189	0,216	0,243	0,270																												
	200	0,025	67000	0,074	860'0	0,123	0,147	0,172	0,196	0,221																													
	450	0,022	0,044	990'0	0,088	0,110	0,132	0,154	0,176																													T	\neg
	700	0,020	0,039	0,059	0,078	860'0	0,117	0,137																															
	320	0,017	0,034	0,051	890'0	0,085	0,102																																
	300	3,015	0,029	0,044	0,058	0,073																																	
	250	0,012 0,015 0,017 0,020 0,022 0,025	0,024 (0,002	0,048																																	\exists	
	200	0,010	0,019	0,029																																		\neg	\neg
	150	0,007 0,010	0,014																																			\dashv	-
ŀ	8	0002																																					-

ПЛОЩАДЬ ЖИВОГО СЕЧЕНИЯ КЛАПАНОВ KZO-2-90 И KZO-2-120, M²

Кассета из 4-х корпусов

Кассета из 2-х корпусов, соединенных по длинной стороне

Нассета из 2-х корпусов, соединенных по короткой стороне

Одинарный клапан

06 ПРОТИВОПОЖАРНАЯ ВЕНТИЛЯЦИЯ

МАССА КЛАПАНОВ KZO-2-60

Размер А, мм

																			Pa	зме	ο Б, г	мм																	
		9	150	200	250	300	350	700	450	200	550	009	920	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700	1750	1800	1850	1900	1950
2000	7.1	2,1	0,9	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	1,61	20,0	21,0	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4	37,3	38,2	39,2	40,1
100	1,30	5,1	0,9	6'9	7,9	8,8	8,6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	16,1	20,0	21,0	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4	37,3	38,2	39,2	40,1
1001	1,1	5,1	0,9	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,1	20,0	21,4	22,3	23,2	24,2	25,1	1,92	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4	37,3	38,2		
1050	000	5,1	0,9	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	1,61	20,0	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4	37,3	38,2		
1000	000	5,1	0'9	6'9	7,9	8,8	8,6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	1,61	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4				
1750	200	2,1	0,9	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	16,1	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4				
1700	3 i	5,1	0'9	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,5	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5						
17.00	000	5,1	9,0	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,5	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5						
1700	900	5,1	9,0	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,6	19,5	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6								
10.01	000	5,1	9,0	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,6	19,5	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6								
1500	00CI	2,5	3,0	3,5	3,9	4,4	6'7	5,3	5,8	6,3	6,7	7,2	7,7	16,3	8,8	6,3	8,6	10,2	10,7	11,2	9,11	12,1	12,6	13,0	13,5	16,0	16,5	17,0	17,4	17,9									
1/50	1430 L	2,5	3,0	3,5	3,9	4,4	6'7	5,3	5,8	6,3	6,7	7,2	7,7	8,2	8,8	6,3	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5	16,0	16,5	17,0	17,4										
1,00	1400	2,5	3,0	3,5	3,9	4,4	6'4	5,3	5,8	6,3	6,7	7,2	7,7	8,2	8,	6'3	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5	16,0	16,5	17,0											
1250	0000	2,5	3,0	3,5	3,9	4,4	6'7	5,3	5,8	6,3	6,7	7,2	7,7	8,2	9,8	6,3	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5	16,0	16,5												
1200	00Cl	2,5	3,0	3,5	3,9	4,4	6'4	5,3	5,8	6,3	6,7	7,2	7,7	8,2	9,8	9,1	8,6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5	14,0													
1250	0.51	2,5	3,0	3,5	3,9	4,4	6'4	5,3	5,8	6,3	6,7	7,2	7,7	8,2	9,8	1,6	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5														
1200	0071	2,5	3,0	3,5	3,9	4,4	6'4	5,3	2,8	6,3	6,7	7,2	7,7	8,2	9,8	9,1	9,6	10,2	10,7	11,2	11,6	12,1	12,6	13,0															
11 0	E C	2,5	3,0	3,5	3,9	4,4	6'7	5,3	2,8	6,3	6,7	7,2	7,7	8,2	9'8	1,6	9'6	10,0	10,7	11,2	11,6	12,1	12,6																
1100	B 1	2,5	3,0	3,5	3,9	4,4	6'4	5,3	2,8	6,3	6,7	7,2	7,7	8,2	9,8	9,1	9'6	10,0	10,7	11,2	11,6	12,1																	
101	000	2,5	3,0	3,5	3,9	4,4	6'5	5,3	2,8	6,3	6,7	7,2	7,7	8,2	9'8	1,6	9'6	10,0	10,5	11,2	11,6																		
2 2	BD 0	2,5	3,0	3,5	3,9	4,4	6'7	5,3	2,8	6,3	6,7	7,2	7,7	8,2	9,8	1,6	9'6	10,0	10,5	11,0																			
0	E 6	2,5	3,0	3,5	3,9	4,4	6'4	5,3	2,8	6,3	6,7	7,2	7,7	8,2	9,8	9,1	9,6	10,0	10,5																				
0	200	2,5	3,0	3,5	3,9	4,4	6'7	5,3	5,8	6,3	6,7	7,2	7,7	8,2	9'8	1,6	9'6	10,0																					
0 10	000	2,5	3,0	3,5	3,9	4,4	6'7	5,3	5,8	6,3	6,7	7,2	7,7	8,2	9,6	9,1	9,6																						
000	000	2,5	3,0	3,5	3,9	4,4	6'7	5,3	5,8	6,3	6,7	7,2	7,7	8,2	9,8	9,1																							
750) L	2,5	3,0	3,5	3,9	4,4	6'7	5,3	5,8	6,3	6,7	7,2	7,7	8,2	9,8																								
707	3 5	2,5	3,0	3,5	3,9	7,4	6'7	5,3	2,8	6,3	6,7	7,2	7,7	8,2																									
7 60	000	2,5	3,0	3,5	3,9	4,4	6'4	5,3	5,8	6,3	6,7	7,2	7,7																										
7007	000	2,5	3,0	3,5	3,9	4,4	6'4	5,3	5,8	6,3	6,7	7,2																											
C	_	-	3,0	3,5	3,9	4,4	6'4	5,3	5,8	6,3	6,7																												
0	000	2,5	3,0	3,5	3,9	4,4	6'4	5,3	5,8	6,3																													
,	0.4 L	2,5	3,0	3,5	3,9	4,4	6'5	5,3	5,8																														
5	90 d	2,5	3,0	3,5	3,9	4,4	6'7	5,3																															
000	_	-	3,0	3,5	3,9	4,4	6'4																																
000	_	-	3,0	3,5	3,9	4,4																														Ш			
000	_	-	3,0	3,5	3,9																																		
000	_	-	3,0	3,5																																			
0 11	_	-	3,0																																				
100	3 6	2,5																																					

Кассета из 4-х корпусов

Кассета из 2-х корпусов, соединенных по длинной стороне

Кассета из 3-х корпусов, соединенных по длинной стороне

Кассета из 2-х корпусов, соединенных по короткой стороне

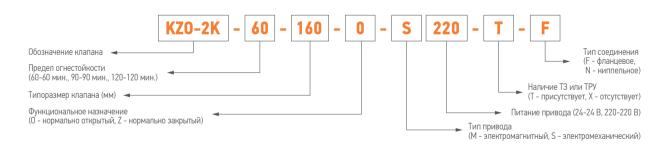
Одинарный клапан

—— Кассета из 2-х корпусов, соединенных по короткой стороне

Одинарный клапан

																			Pa	зме	р Б, і	мм																	
		100	150	200	250	300	350	400	450	200	220	009	920	700	750	800	820	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700	1750	1800	1850	1900	1950
	2000	5,1	9'0	6'9	7,9	8'8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,1	20,0	21,0	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4	37,3	38,2	39,2	40,1
	1950	5,1	0'9	6'9	6'2	8'8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,1	20,0	21,0	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4	37,3	38,2	39,2	40,1
	1900	5,1	9'0	6'9	6'2	8'8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,1	20,0	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4	37,3	38,2		
	1850	5,1	9'9	6'9	7,9	8'8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,1	20,0	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4	37,3	38,2		
	1800	5,1	0'9	6'9	6'2	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	1,91	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4				
	1750	5,1	9'9	6'9	7,9	8'8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,1	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5	35,4	36,4				
	1700	5,1	0'9	6'9	67	8,8	8'6	10,7	9'11	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,5	20,4	21,4	22,3	23,2	24'5	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5						
	1650	2,1	9'0	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	18,2	19,5	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6	33,5	34,5						
	1600	5,1	9,0	6'9	7,9	8,8	8'6	10,7	9'11	12,6	13,5	14,4	15,4	16,3	17,2	18,6	19,5	20,4	21,4	22,3	23,2	24'5	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6								
	1550	2,1	9'0	6'9	7,9	8,8	8'6	10,7	11,6	12,6	13,5	14,4	15,4	16,3	17,2	9'81	19,5	20,4	21,4	22,3	23,2	24,2	25,1	26,1	27,0	27,9	28,9	29,8	30,7	31,7	32,6								
	1500	2,5	3,0	3,5	3,9	7'7	6'5	5,3	2,8	6,3	6,7	7,2	1.7	16,3	8,8	9,3	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5	16,0	16,5	17,0	17,4	17,9									
	1450	2,5	3,0	3,5	3,9	7'7	6,4	5,3	2,8	6,3	6,7	7,2	7.7	8,2	8,8	9,3	8'6	10,2	10,7	11,2	9'11	12,1	12,6	13,0	13,5	16,0	16,5	17,0	17,4										
	1400	2,5	3,0	3,5	3,9	7'7	6'5	5,3	2,8	6,3	6,7	7,2	1.7	8,2	8,8	9,3	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5	16,0	16,5	17,0											
	1350	2,5	3,0	3,5	3,9	7'7	6'7	5,3	5,8	6,3	6,7	7,2	7.7	8,2	9,8	6,3	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5	16,0	16,5												
	1300	2,5	3,0	3,5	3,9	7'7	6'5	5,3	5,8	6,3	6,7	7,2	7.7	8,2	9'8	1,9	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5	14,0													
	1250	2,5	3,0	3,5	3,9	4'4	6'7	5,3	5,8	6,3	6,7	7,2	1.7	8,2	9,8	1,4	8'6	10,2	10,7	11,2	11,6	12,1	12,6	13,0	13,5														
	1200	2,5	3,0	3,5	3,9	7'7	6,4	5,3	2,8	6,3	6,7	7,2	7.7	8,2	9'8	1,6	9,6	10,2	10,7	11,2	11,6	12,1	12,6	13,0															
	1150	2,5	3,0	3,5	3,9	7'7	6'4	5,3	2,8	6,3	6,7	7,2	1.7	8,2	9,8	1,9	9,6	10,0	10,7	11,2	11,6	12,1	12,6																
Σ	1100	2,5	3,0	3,5	3,9	7'7	6'4	5,3	2,8	6,3	6,7	7,2	7,7	8,2	9,8	1,9	9'6	10,0	10,7	11,2	11,6	12,1																	
Размер А, мм	1050	2,5	3,0	3,5	3,9	7'7	6'5	5,3	2,8	6,3	6,7	7,2	7.7	8,2	9'8	1,9	9%	10,0	10,5	11,2	11,6																		
Раз	1000	2,5	3,0	3,5	3,9	7'7	6'5	5,3	2,8	6,3	6,7	7,2	7.7	8,2	9,8	1,9	9,6	10,0	10,5	11,0																			
	950	2,5	3,0	3,5	3,9	7,4	6'5	5,3	5,8	6,3	6,7	7,2	7,7	8,2	9'8	1,9	9'6	10,0	10,5																				
	900	2,5	3,0	3,5	3,9	7'7	6'7	5,3	2,8	6,3	6,7	7,2	1,7	8,2	9,8	1,4	9'6	10,0																					
	820	2,5	30	3,5	3,9	7'7	6'7	2,3	2,8	6,3	6,7	7,2	7.7	8,2	9'8	1,4	9'6																						
	800	2,5	3,0	3,5	3,9	7'7	6'7	2,3	5,8	6,3	6,7	7,2	7.7	8,2	9'8	1,9																							
	750	2,5	3,0	3,5	3,9	7'7	6'7	5,3	2,8	6,3	6,7	7,2	7.7	8,2	8,6																								
	700	2,5	3,0	3,5	3,9	4,4	6,4	5,3	2,8	6,3	6,7	7,2	7.7	8,2																									
	920	2,5	3,0	3,5	3,9	7'7	6'7	5,3	2,8	6,3	6,7	7,2	7.7																										
	9009	2,5	30	3,5	3,9	4'4	6'4	5,3	2,8	6,3	6,7	7,2																											
	550	2,5	3,0	3,5	3,9	7'7	6'7	2,3	2,8	6,3	6,7																												
	200	2,5	3,0	3,5	3,9	7'7	6'4	2,3	2,8	6,3																													
	450	2,5	3,0	3,5	3,9	4'4	6'5	5,3	2,8																														
	400	2,5	3,0	3,5	3,9	7'7	6'7	5,3																															
	350	2,5	3,0	3,5	3,9	4,4	6'5																																
	300	2,5	3,0	3,5	3,9	7'7																																	
	250	2,5	3,0	3,5	3,9																																		
	200	2,5	3,0	3,5																																			
	150	2,5	3,0																																				
	100	2,5																																					

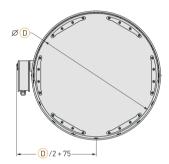
ПРОТИВОПОЖАРНЫЙ КЛАПАН КZO-2K

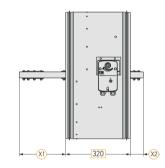


- Корпус клапана изготавливается из оцинкованной стали;
- Заслонка из огнестойкого стекломагнезита;
- В зависимости от предела огнестойкости применяется заслонка разной толщины;
- По периметру заслонки термоактивный уплотнитель, который расширяется под действием высоких температур, обеспечивая герметичность клапана;
- Приводы устанавливаются снаружи корпуса.

Противопожарные клапаны KZO-2K НО препятствуют распространению огня и дымовых газов по воздуховодам в системах общеобменной вентиляции, а KZO-2K НЗ обеспечивают отвод продуктов горения и подвод свежего воздуха в системах противодымной вентиляции и подпора воздуха.

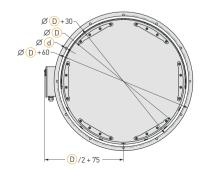
ХАРАКТЕРИСТИКИ ПРИВОДОВ

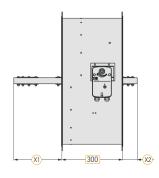

Тип прі	ивода	Электромагнитный	Электромеханический
Принцип срабать	ывания привода	подача напряжения на электромагнит или разрыв цепи ТЗ в НО клапане	отключение питающего напряжения или срабатывание ТРУ в НО клапане
Способ перевода заслонки	в рабочее положение	Автоматический по сигналу пожарной автоматики или от ТЗ в НО клапане; Дистанционный с пульта управления; Вручную от кнопки на клеммной коробке.	 Автоматический по сигналу пожарной автоматики или от ТРУ в НО клапане; Дистанционный с пульта управления Вручную от кнопки на ТРУ.
	в исходное положение	вручную	дистанционный с пульта управления
Механизм	в рабочее положение	возвратная пружина	возвратная пружина
перевода заслонки	в исходное положение	-	сервопривод
Время	в рабочее положение	2 c	70 c
поворота заслонки	в исходное положение	-	20 c
Питание	привода	=12B, =24B, ~220B	=24B, ~24B, ~220B
Потребляемая мо	щность привода	100-220 Вт	5 Вт
Степень защи	ты привода	IP 10 (УХЛ 4)	IP 54



РАЗМЕРЫ И МАССА КЛАПАНОВ КZO-2K-60

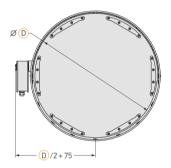
ниппельное соединение

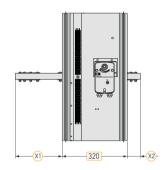

D	Разме	ры, мм		Масса, кг
D	X1	X2	Площадь живого сеч-я, м²	масса, кі
100	нет	нет	0,005	2,9
125	нет	нет	0,008	3,3
140	нет	нет	0,010	3,6
160	нет	нет	0,016	4,0
200	15	нет	0,026	4,8
225	27	нет	0,034	5,4
250	40	нет	0,043	6,1
280	55	нет	0,055	6,9
315	72	нет	0,070	8,0
355	92	нет	0,090	9,3
400	115	нет	0,116	10,9
450	140	нет	0,148	12,9
500	165	нет	0,184	15,1
560	195	30	0,232	17,9
630	230	65	0,296	21,5
710	270	105	0,378	26,1



ФЛАНЦЕВОЕ СОЕДИНЕНИЕ

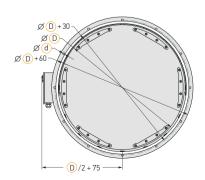
D		Размеры, мм			M
D	X1	X2	d	Площадь живого сеч-я, м²	Масса, кг
100	нет	нет	7 × 4 шт	0,005	3,0
125	нет	нет	7 × 6 шт	0,008	3,5
140	нет	нет	7 × 6 шт	0,010	3,8
160	5	нет	7 × 6 шт	0,016	4,2
200	25	нет	7 × 6 шт	0,026	5,2
225	37	нет	7 × 6 шт	0,034	5,8
250	50	нет	7 × 6 шт	0,043	6,5
280	65	нет	7 × 6 шт	0,055	7,4
315	82	нет	7 × 8 шт	0,070	8,5
355	102	нет	7 × 8 шт	0,090	9,9
400	125	нет	7 × 10 шт	0,116	11,6
450	150	нет	7 × 10 шт	0,148	13,6
500	175	10	7 × 10 шт	0,184	15,8
560	205	40	7 × 10 шт	0,232	18,7
630	240	75	10 × 12 шт	0,296	22,4
710	280	115	10 × 12 шт	0,378	27,1

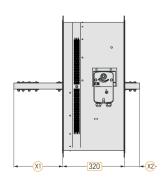




РАЗМЕРЫ И МАССА КЛАПАНОВ КZO-2K-90 И KZO-2K-120

ниппельное соединение

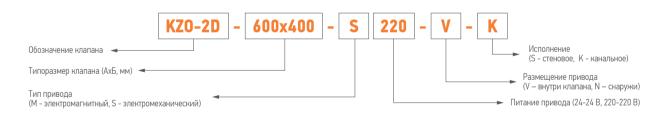

D	Разме	ры, мм	D	Massa
D	X1	X2	Площадь живого сеч-я, м²	Масса, кг
100	нет	нет	0,005	3,1
125	нет	нет	0,008	3,5
140	нет	нет	0,010	3,9
160	нет	нет	0,016	4,3
200	15	нет	0,026	5,3
225	27	нет	0,034	6,0
250	40	нет	0,043	6,7
280	55	нет	0,055	7,7
315	72	нет	0,070	8,9
355	92	нет	0,090	10,4
400	115	нет	0,116	12,3
450	140	нет	0,148	14,5
500	165	нет	0,184	17,0
560	195	30	0,232	20,2
630	230	65	0,296	24,3
710	270	105	0,378	29,5

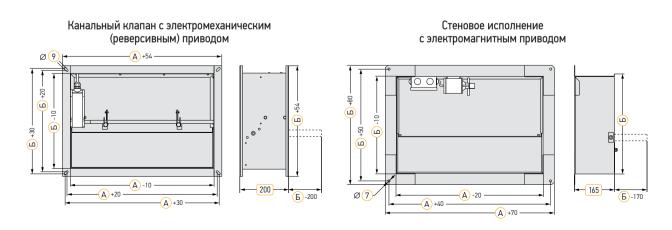


ФЛАНЦЕВОЕ СОЕДИНЕНИЕ

D		Размеры, мм			Manage wa
D	X1	X2	d	Площадь живого сеч-я, м²	Масса, кг
100	нет	нет	7 × 4 шт	0,005	3,2
125	нет	нет	7 × 6 шт	0,008	3,8
140	нет	нет	7 × 6 шт	0,010	4,1
160	5	нет	7 × 6 шт	0,016	4,6
200	25	нет	7 × 6 шт	0,026	5,6
225	37	нет	7 × 6 шт	0,034	6,4
250	50	нет	7 × 6 шт	0,043	7,1
280	65	нет	7 × 6 шт	0,055	8,1
315	82	нет	7 × 8 шт	0,070	9,4
355	102	нет	7 × 8 шт	0,090	11,0
400	125	нет	7 × 10 шт	0,116	12,9
450	150	нет	7 × 10 шт	0,148	15,2
500	175	10	7 × 10 шт	0,184	17,7
560	205	40	7 × 10 шт	0,232	21,0
630	240	75	10 × 12 шт	0,296	25,2
710	280	115	10 × 12 шт	0,378	30,5

КЛАПАН ДЫМОУДАЛЕНИЯ KZO-2D




- Исполнение: канальное, стеновое;
- Корпус и лопатка клапана изготавливается из оцинкованной стали;
- Выпускаются с нормально закрытой заслонкой;
- Приводы клапанов устанавливаются внутри или снаружи корпуса (в зависимости от исполнения; внутри – только для стенового исполнения);
- Предел огнестойкости: E90 в режиме дымового клапана;
- Тип привода: электромагнитный, электромеханический;
- Декоративная решетка к стеновым клапанам.

Клапаны дымоудаления KZO-2D обеспечивают отвод продуктов горения и подвод свежего воздуха в системах противодымной вентиляции.

ХАРАКТЕРИСТИКИ ПРИВОДОВ

Тип при	вода	Электромагнитный	Электромеханический
Принцип срабаты	вания привода	Подача напряжения на электромагнит	Подача питающего напряжения
Способ перевода лопатки	в рабочее положение	 Автоматический по сигналу пожарной автоматики; Дистанционный с пульта управления. 	 Автоматический по сигналу пожарной автоматики; Дистанционный с пульта управления.
	в исходное положение	Вручную	 Дистанционный с пульта управления; Вручную (кнопка разблокировки)
Механизм привода	в рабочее положение	Возвратная пружина	Сервопривод
лопатки	в исходное положение	_	Сервопривод, пружина
D	в рабочее положение	2 c	45-70 c
Время поворота лопатки	в исходное положение	_	20-70 с (электропривод)
Питание п	ривода	~24В, =24В,~220В, 50Гц	~24В,~220В, 50Гц=24В
Потребляемая моц	цность привода	100-220 Вт	5-10 Вт, при переводе в исходное положение после срабатывания.
Степень защит	гы привода	IP 10	IP 54

ПЛОЩАДЬ ЖИВОГО СЕЧЕНИЯ КАНАЛЬНЫХ КЛАПАНОВ KZO-2D, НАРУЖНЫЙ ПРИВОД, М²

											Разме	р Б, мм	1									
	300	350	400	450	200	550	009	920	700	750	800	820	006	950	1000	1050	1100	1150	1200	1250	1300	1350
2000	0,577	0,677	9/2/0	9/8/0	0,975	1,075	1,174	1,274	1,373	1,473	1,572	1,672	1,77,1	1,871	1,970							
1950	0,563	0,660	0,757	0,854	0,951	1,048	1,145	1,242	1,339	1,436	1,533	1,630	1,727	1,824	1,921							
1900	0,548	0,643	0,737	0,832	976'0	1,021	1,115	1,210	1,304	1,399	1,493	1,588	1,682	1,777	1,871							
1850	0,534	979'0	0,718	0,810	0,902	766'0	1,086	1,178	1,270	1,362	1,454	1,546	1,638	1,730	1,822							
1800	0,519	609'0	869'0	0,788	0,877	296'0	1,056	1,146	1,235	1,325	1,414	1,504	1,593	1,683	1,772	1,862	1,951					
1750	905'0	0,592	6/9'0	992'0	0,853	0,940	1,027	1,114	1,201	1,288	1,375	1,462	1,549	1,636	1,723	1,810	1,897					
1700	067'0	0,575	659'0	0,744	0,828	0,913	266'0	1,082	1,166	1,251	1,335	1,420	1,504	1,589	1,673	1,758	1,842					
1650	9/7/0	0,558	0,640	0,722	0,804	988'0	896'0	1,050	1,132	1,214	1,296	1,378	1,460	1,542	1,624	1,706	1,788					
1600	197'0	0,541	0,620	00,700	0,779	0,859	866'0	1,018	1,097	1,177	1,256	1,336	1,415	1,495	1,574	1,654	1,733	1,813	1,892			
1550	7440	0,524	0,601	8/9'0	0,755	0,832	606'0	986'0	1,063	1,140	1,217	1,294	1,371	1,448	1,525	1,602	1,679	1,756	1,833			
1500	0,432	0,507	0,581	959'0	0,730	0,805	0,879	0,954	1,028	1,103	1,177	1,252	1,326	1,401	1,475	1,550	1,624	1,699	1,773	1,848	1,922	
1450	0,418	0,490	0,562	0,634	90,70	0,778	0,850	0,922	766'0	1,066	1,138	1,210	1,282	1,354	1,426	1,498	1,570	1,642	1,714	1,786	1,858	
1400	0,403	0,473	0,542	0,612	0,681	0,751	0,820	0,890	656'0	1,029	1,098	1,168	1,237	1,307	1,376	1,446	1,515	1,585	1,654	1,724	1,793	1,863
1350	0,389	0,456	0,523	0,590	0,657	0,724	0,791	0,858	0,925	0,992	1,059	1,126	1,193	1,260	1,327	1,394	1,461	1,528	1,595	1,662	1,729	1,796
1300	0,374	0,439	0,503	0,568	0,632	769'0	192'0	978'0	0/880	0,955	1,019	1,084	1,148	1,213	1,277	1,342	1,406	1,471	1,535	1,600		
1250	0,360	0,422	0,484	975'0	809'0	0/9'0	0,732	0,794	958'0	0,918	0,980	1,042	1,104	1,166	1,228	1,290	1,352	1,414	1,476	1,538		
1200	0,345	0,405	0,464	0,524	0,583	0,643	0,702	0,762	0,821	0,881	0,940	1,000	1,059	1,119	1,178	1,238	1,297	1,357	1,416			
1150	0,331	0,388	0,445	0,502	0,559	0,616	0,673	0,730	0,787	0,844	0,901	0,958	1,015	1,072	1,129	1,186	1,243	1,300				
1100	0,316	0,371	0,425	0,480	0,534	0,589	0,643	869'0	0,752	0,807	198'0	916'0	0,970	1,025	1,079	1,134	1,188					
1050	0,302	0,354	907'0	0,458	0,510	0,562	0,614	0,666	0,718	0,770	0,822	7,870	0,926	876'0	1,030	1,082						
1000	0,287	0,337	0,386	0,436	0,485	0,535	0,584	769'0	0,683	0,733	0,782	0,832	0,881	0,931	0,980							
950	0,273	0,320	0,367	0,414	197'0	0,508	0,555	0,602	679'0	969'0	0,743	0,790	0,837	0,884								
900	0,258	0,303	0,347	0,392	0,436	0,481	0,525	0,570	0,614	0,659	0,703	0,748	0,792									
820	0,244	0,286	0,328	0,370	0,412	0,454	967'0	0,538	0,580	0,622	0,664	902'0										
800	0,229	0,269	906,0	0,348	0,387	0,427	997'0	905'0	0,545	0,585	0,624											
750	0,215	0,252	0,289	0,326	0,363	0,400	0,437	0,474	0,511	0,548												
700	0,200	0,235	0,269	0,304	0,338	0,373	0,407	0,442	9/5/0													
920	0,186	0,218	0,250	0,282	0,314	0,346	0,378	0,410														
009	0,171	0,201	0,230	0,260	0,289	0,319	0,348															
220	0,157	0,184	0,211	0,238	0,265	0,292																
200	0,142	0,167	0,191	0,216	0,240																	
450	0,128	0,150	0,172	0,194																		
400	0,113	0,133	0,152																			
320	660'0	0,116																				
300	780'																					

Размер А, мм

Кассета из 3-х корпусов, соединенных по длинной стороне

 Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки горизонтально Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки вертикально

Кассета из 4-х корпусов Одинарный клапан

Кассета из 3-х корпусов, соединенных по длинной стороне

Нассета из 2-х корпусов, соединенных по короткой стороне

Кассета из 3-х корпусов, соединенных по короткой стороне

ПЛОЩАДЬ ЖИВОГО СЕЧЕНИЯ КАНАЛЬНЫХ КЛАПАНОВ KZO-2D, ВНУТРЕННИЙ ПРИВОД, М²

											Размеј	р Б, мм	1									
	300	350	400	450	200	550	009	920	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350
2000	0,561	0,660	092'0	0,859	0,959	1,058	1,158	1,257	1,357	1,456	1,556	1,655	1,755	1,854	1,954							
1950	975'0	0,643	0,740	0,837	0,934	1,031	1,128	1,225	1,322	1,419	1,516	1,613	1,710	1,807	1,904							
1900	0,532	0,626	0,721	0,815	01.6'0	1,004	1,099	1,193	1,288	1,382	1,477	1,571	1,666	1,760	1,855							
1850	0,517	609'0	0,701	0,793	0,885	226'0	1,069	1,161	1,253	1,345	1,437	1,529	1,621	1,713	1,805							
1800	0,503	0,592	289'0	0,771	198'0	0,950	1,040	1,129	1,219	1,308	1,398	1,487	1,577	1,666	1,756	1,845	1,935					
1750	0,488	0,575	299'0	67/2'0	9830	0,923	1,010	1,097	1,184	1,271	1,358	1,445	1,532	1,619	1,706	1,793	1,880					
1700	7/27'0	0,558	0,643	0,727	0,812	968'0	0,981	1,065	1,150	1,234	1,319	1,403	1,488	1,572	1,657	1,741	1,826					
1650	0,459	0,541	0,623	0,705	0,787	698'0	0,951	1,033	1,115	1,197	1,279	1,361	1,443	1,525	1,607	1,689	1,77,1					
1600	0,445	0,524	709'0	0,683	692'0	0,842	0,922	1,00,1	1,081	1,160	1,240	1,319	1,399	1,478	1,558	1,637	1,717	1,796	1,876			
1550	0,430	0,507	0,584	0,661	0,738	0,815	0,892	696'0	1,046	1,123	1,200	1,277	1,354	1,431	1,508	1,585	1,662	1,739	1,816			
1500	0,416	0,490	0,565	669,0	0,714	0,788	0,863	0,937	1,012	1,086	1,161	1,235	1,310	1,384	1,459	1,533	1,608	1,682	1,757	1,831	1,906	
1450	107'0	0,473	0,545	0,617	689'0	192'0	0,833	0,905	726'0	1,049	1,121	1,193	1,265	1,337	1,409	1,481	1,553	1,625	1,697	1,769	1,841	
1400	0,387	0,456	0,526	0,595	999'0	0,734	0,804	0,873	0,943	1,012	1,082	1,151	1,221	1,290	1,360	1,429	1,499	1,568	1,638	1,707	17771	1,846
1350	0,372	0,439	905'0	0,573	0,640	0,707	0,774	0,841	806'0	0,975	1,042	1,109	1,176	1,243	1,310	1,377	1,444	1,511	1,578	1,645	1,712	1,779
1300	0,358	0,422	0,487	0,551	919'0	0,680	0,745	608'0	0,874	0,938	1,003	1,067	1,132	1,196	1,261	1,325	1,390	1,454	1,519	1,583		
1250	0,343	0,405	295'0	0,529	0,591	0,653	0,715	77.70	0,839	106'0	696'0	1,025	1,087	1,149	1,211	1,273	1,335	1,397	1,459	1,521		
1200	0,329	0,388	0,448	0,507	0,567	979'0	989'0	0,745	0,805	0,864	0,924	0,983	1,043	1,102	1,162	1,221	1,281	1,340	1,400			
1150	0,314	0,371	0,428	0,485	0,542	0,599	959'0	0,713	0,770	0,827	0,884	176'0	866'0	1,055	1,112	1,169	1,226	1,283				
1100	0,300	0,354	0,409	0,463	0,518	0,572	0,627	0,681	0,736	062'0	0,845	0,899	0,954	1,008	1,063	1,117	1,172					
1050	0,285	0,337	0,389	0,441	0,493	0,545	0,597	679'0	0,701	0,753	0,805	0,857	606'0	196'0	1,013	1,065						
1000	0,271	0,320	0,370	0,419	695'0	0,518	0,568	0,617	299'0	0,716	992'0	0,815	0,865	0,914	796,0							
950	0,256	0,303	0,350	0,397	0,444	0,491	0,538	0,585	0,632	629'0	0,726	0,773	0,820	298'0								
900	0,242	0,286	0,331	0,375	0,420	0,464	0,509	0,553	0,598	0,642	0,687	0,731	9///0									
850	0,227	0,269	0,311	0,353	0,395	0,437	0,479	0,521	0,563	0,605	0,647	0,689										
800	0,213	0,252	0,292	0,331	0,371	0,410	0,450	0,489	0,529	0,568	809'0											
750	0,198	0,235	0,272	0,309	0,346	0,383	0,420	0,457	0,494	0,531												
700	0,184	0,218	0,253	0,287	0,322	0,356	0,391	0,425	0,460													
920	0,169	0,201	0,233	0,265	0,297	0,329	0,361	0,393														
009	0,155	0,184	0,214	0,243	0,273	0,302	0,332															
550	0,140	0,167	0,194	0,221	0,248	0,275																
200	0,126	0,150	0,175	0,199	0,224																	
450	0,111	0,133	0,155	0,177																		
700	0,097	0,116	0,136																			
350	0,082	0,099																				
300	890'0																					

Кассета из 3-х корпусов, соединенных по длинной стороне Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки вертикально Одинарный клапан

Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки горизонтально Кассета из 4-х корпусов

Кассета из 2-х корпусов, соединенных по короткой стороне Кассета из 3-х корпусов, соединенных по длинной стороне

Кассета из 3-х корпусов, соединенных по короткой стороне

ПЛОЩАДЬ ПРОХОДНОГО СЕЧЕНИЯ СТЕНОВЫХ КЛАПАНОВ KZO-2D, ВНУТРЕННИЙ ПРИВОД, М²

											Разме	р Б, мм	1									
	300	350	007	450	200	250	009	920	700	750	800	820	006	950	1000	1050	1100	1150	1200	1250	1300	1350
2000	0,558	0,657	0,756	0,855	0,954	1,053	1,152	1,251	1,350	1,449	1,548	1,647	1,746	1,845	1,944							
1950	0,543	0,640	0,736	0,833	0,929	1,026	1,122	1,219	1,315	1,412	1,508	1,605	1,701	1,798	1,894							
1900	0,529	0,623	0,717	0,811	0,905	666'0	1,093	1,187	1,281	1,375	1,469	1,563	1,657	1,751	1,845							
1850	0,514	909'0	269'0	682'0	0,880	0,972	1,063	1,155	1,246	1,338	1,429	1,521	1,612	1,704	1,795							
1800	0,500	0,589	8/9'0	292'0	958'0	0,945	1,034	1,123	1,212	1,301	1,390	1,479	1,568	1,657	1,746	1,835	1,924					
1750	0,485	0,572	0,658	0,745	0,831	0,918	1,004	1,00,1	1,177	1,264	1,350	1,437	1,523	1,610	1,696	1,783	1,869					
1700	0,471	0,555	669'0	0,723	0,807	0,891	0,975	1,059	1,143	1,227	1,311	1,395	1,479	1,563	1,647	1,731	1,815					
1650	0,456	0,538	0,619	0,701	0,782	798'0	0,945	1,027	1,108	1,190	1,271	1,353	1,434	1,516	1,597	1,679	1,760					
1600	0,442	0,521	009'0	629'0	0,758	0,837	916'0	966'0	1,074	1,153	1,232	1,311	1,390	1,469	1,548	1,627	1,706	1,785	1,864			
1550	0,427	0,504	0,580	0,657	0,733	0,810	988'0	696'0	1,039	1,116	1,192	1,269	1,345	1,422	1,498	1,575	1,651	1,728	1,804			
1500	0,413	0,487	0,561	0,635	0,709	0,783	0,857	0,931	1,005	1,079	1,153	1,227	1,301	1,375	1,449	1,523	1,597	1,671	1,745	1,819	1,893	
1450	0,398	0,470	0,541	0,613	789'0	0,756	0,827	668'0	0,970	1,042	1,113	1,185	1,256	1,328	1,399	1,471	1,542	1,614	1,685	1,757	1,828	
1400	0,384	0,453	0,522	0,591	099'0	0,729	0,798	0,867	986'0	1,005	1,074	1,143	1,212	1,281	1,350	1,419	1,488	1,557	1,626	1,695	1,764	1,833
1350	698'0	0,436	0,502	695'0	0,635	0,702	892'0	0,835	0,901	896'0	1,034	1,101	1,167	1,234	1,300	1,367	1,433	1,500	1,566	1,633	1,699	1,766
1300	0,355	0,419	0,483	0,547	119'0	0,675	0,739	0,803	298'0	0,931	266'0	1,059	1,123	1,187	1,251	1,315	1,379	1,443	1,507	1,571		
1250	0,340	0,402	0,463	0,525	0,586	0,648	0,709	177,10	0,832	0,894	0,955	1,017	1,078	1,140	1,201	1,263	1,324	1,386	1,447	1,509		
1200	0,326	0,385	7770	0,503	0,562	0,621	089'0	0,739	0,798	0,857	916'0	0,975	1,034	1,093	1,152	1,211	1,270	1,329	1,388			
1150	0,311	0,368	0,424	0,481	0,537	0,594	0,650	0,707	0,763	0,820	9/8/0	0,933	686'0	1,046	1,102	1,159	1,215	1,272				
1100	0,297	0,351	0,405	0,459	0,513	0,567	0,621	0,675	0,729	0,783	0,837	0,891	0,945	666'0	1,053	1,107	1,161					
1050	0,282	0,334	0,385	0,437	0,488	0,540	0,591	0,643	769'0	0,746	762'0	678'0	0,900	0,952	1,003	1,055						
1000	0,268	0,317	0,366	0,415	0,464	0,513	0,562	0,611	099'0	602'0	0,758	0,807	958'0	0,905	0,954							
950	0,253	0,300	0,346	0,393	0,439	0,486	0,532	0,579	0,625	0,672	0,718	0,765	0,811	0,858								
006	0,239	0,283	0,327	0,371	0,415	0,459	0,503	0,547	0,591	0,635	6/9'0	0,723	292'0									
850	0,224	0,266	0,307	0,349	0,390	0,432	0,473	0,515	0,556	0,598	669,0	0,681										
800	0,210	0,249	0,288	0,327	998'0	0,405	777'0	0,483	0,522	0,561	009'0											
750	0,195	0,232	0,268	0,305	0,341	0,378	0,414	0,451	0,487	0,524												
700	0,181	0,215	0,249	0,283	0,317	0,351	0,385	0,419	0,453													
920	991'0	0,198	0,229	0,261	0,292	0,324	0,355	0,387														
009	0,152	0,181	0,210	0,239	0,268	0,297	0,326															
220	0,137	0,164	0,190	0,217	0,243	0,270																
200	0,123	0,147	0,171	0,195	0,219																	
450	0,108	0,130	0,151	0,173																		
700	760'0	0,113	0,132																			
350	0,079	960'0																				
300	0,065																					

Размер А, мм

Кассета из 3-х корпусов, соединенных по длинной стороне

Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки горизонтально Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки вертикально

Кассета из 4-х корпусов

Одинарный клапан

Кассета из 3-х корпусов, соединенных по длинной стороне

Кассета из 3-х корпусов, соединенных по короткой стороне Кассета из 2-х корпусов, соединенных по короткой стороне Размер А, мм

7.7

2000	28,0	29,3	30,5	31,8	33,1	40,2	41,9	26,0	57,2	58,5	59,8	0'19	62,3	9'89	6,49							
1950	27,5	28,7	30,0	31,3	32,5	39,7	7,12	55,0	56,2	57,5	58,7	0'09	61,3	62,5	8'89							
1900	27,0	28,2	29,5	30,7	32,0	39,1	8'07	42,5	44,2	26,5	27.7	29,0	60,2	61,5	62,7							
1850	26,5	27,7	29,0	30,2	31,4	32,7	40,2	41,9	43,6	55,4	2'99	57,9	59,2	7'09	9'19							
1800	26,0	27,2	28,4	29,7	30,9	32,1	39,7	41,3	43,0	24,4	55,7	26,9	58,1	59,3	9'09	8,11	0'89					
1750	25,5	26,7	6'12	29,1	30,4	31,6	39,1	8'07	47.7	53,4	54,6	55,8	0'65	58,3	59,5	2'09	6'19					
1700	25,0	26,2	27,4	28,6	29,8	31,0	38,6	40,2	41,8	52,4	53,6	24,8	7'87	57,2	58,4	29,6	6'09					
1650	24,5	25,7	26,9	28,1	29,3	30,5	31,7	39,6	41,3	51,4	52,6	53,8	8'./7	56,2	57,4	58,6	59,8					
1600	24,0	25,2	26,4	27,6	28,7	29,9	31,1	39,1	40,7	50,3	51,5	52,7	47,2	8'87	50,4	57,5	58,7	266	1,16			
1550	23,5	24,7	25,8	27,0	28,2	29,4	30,6	38,5	40,1	6,94	50,5	21,7	46,5	48,2	8'67	56,4	57,6	58,8	26'6			
1500	23,0	24,2	25,3	26,5	27.7	28'8	30,0	37,9	39,5	6'87	49,5	9'05	42'6	47,5	1,94	55,3	56,5	27,7	58,8	0'09	6'19	
1450	22,5	23,6	24,8	26,0	1,72	28,3	29,4	37,4	38,9	6,7,3	7'87	9'67	45,3	6'97	48,5	50,1	51,7	26,6	57,7	58,9	8'99	
1400	22,0	23,1	24,3	25,4	26,6	27.7	28,9	36,8	38,4	6,64	7.77	9'87	44,7	6'97	8'27	7'67	51,0	55,5	56,6	57,8	65,7	73,6
1350	21,5	22,6	23,8	24,9	26,0	27.2	28,3	36,2	37,8	45,2	7'97	47,5	1,44,1	45,6	47,2	8'87	50,3	54,4	55,5	56,6	64,5	72,4
1300	21,0	22,1	23,2	24,4	25,5	26,6	27,8	35,6	37,2	7'77	45,4	46,5	43,4	45,0	9'97	48,1	49,7	51,2	52,8	52,55		
1250	20,5	21,6	22,7	23,8	25,0	26,1	27.2	28,3	29,4	43,2	6,44,3	45,4	42,8	7,44	45,9	47,5	0'67	9'05	52,1	54,4		
1200	16,2	16,9	17,6	23,3	24,4	25,5	26,6	32,5	33,2	33,8	34,5	35,2	42,2	43,7	48,7	7'67	50,1	50,8	51,4			
1150	15,7	16,4	17,1	22,8	23,9	25,0	26,1	31,5	32,2	32,8	33,5	34,2	41,6	43,1	47,2	67.5	9'87	49,2				
1100	15,2	15,9	16,6	17,2	23,3	24,4	25,5	30,5	31,1	31,8	32,5	33,1	33,8	34,4	45,7	7,97	0'27					
1050	14,7	15,4	16,0	16,7	22,8	23,8	25,0	29,5	30,1	30,8	31,4	32,1	32,7	33,4	44,2	6'77						
1000	14,2	14,9	15,5	16,2	16,8	23,3	24,4	28,5	29,1	29,8	30,4	31,0	31,7	32,3	33,0							
950	13,7	14,4	15,0	15,6	16,3	22,7	23,8	27,5	28,1	28,7	79,4	30,0	30,6	31,3								
900	13,2	13,9	14,5	15,1	15,7	16,3	23,3	26,5	27,1	27.7	28,3	29,0	29,6									
850	12,7	13,4	14,0	14,6	15,2	15,8	22,7	25,5	26,1	26,7	27,3	27,9										
800	12,2	12,8	13,4	14,0	14,6	15,2	15,8	24,5	25,1	25,7	26,3											
750	11,7	12,3	12,9	13,5	14,1	14,7	15,3	15,9	24,1	24,7												
700	11,2	11,8	12,4	13,0	13,6	14,1	14,7	15,3	15,9													
920	10,7	11,3	11,9	12,5	13,0	13,6	14,2	14,7														
009	10,2	10,8	11,4	11,9	12,5	13,0	13,6															
550	6,7	10,3	10,8	11,4	11,9	12,5																
200	9,2	8'6	10,3	10,9	11,4																	
450	8,7	6,3	8'6	10,3																		
400	8,2	8,8	6,3																			

Размер Б, мм

Кассета из 4-х корпусов Нассета из 3-х корпусов, соединенных по длинной стороне, ось лопатки вертикально

Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки вертикально

Одинарный клапан

Кассета из 3-х корпусов, соединенных по длинной стороне, ось лопатки горизонтально Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки горизонтально

Кассета из 2-х корпусов, соединенных по короткой стороне

Кассета из 3-х корпусов, соединенных по короткой стороне

МАССА СТЕНОВЫХ КЛАПАНОВ КZO-2D, КГ

350

8'9

											Разме	р Б, мм	1									
	300	350	700	450	200	550	009	920	700	750	800	820	006	950	1000	1050	1100	1150	1200	1250	1300	1350
2000	23,3	24,6	25,9	27,3	28,6	34,4	36,1	9'97	67,9	49,2	9'09	51,9	53,2	9,45	55,9							
1950	22,9	24,2	25,5	26,8	28,1	33,9	35,5	45,7	0'25	48,3	Ľ67	51,0	52,3	53,6	54,9							
1900	777	23,7	25,0	26,3	27,6	33,4	35,0	36,6	38,2	47,5	48,8	50,1	51,4	52,7	53,9							
1850	22,0	23,3	24,6	25,9	27,1	28,4	34,5	36,0	37,6	9'97	67.7	7'67	50,4	21,7	53,0							
1800	21,6	22.9	24,1	25,4	26,6	27,9	33,9	35,5	37,0	45,7	0'25	48,2	49,5	8'09	52,0	53,3	24,5					
1750	21,2	22,4	23,7	24,9	26,1	77.4	33,4	34,9	36,5	8,44	1'97	47,3	42,6	8'67	51,0	52,3	53,5					
1700	20,8	22,0	23,2	54,4	25,7	26,9	32,9	34,4	35,9	0,44	45,2	7,97	42,0	6'87	50,1	51,3	52,5					
1650	20,3	21,5	22,8	24,0	25,2	79,7	27,6	33,9	35,4	43,1	6443	45,5	41,3	6'27	1,64	50,3	51,5					
1600	19,9	21,1	22,3	23,5	24,7	25,9	27,0	33,3	34,8	42,2	43,4	9'55	40,7	42,2	43,7	6,64	50,5	51,7	52,9			
1550	19,5	20,7	21,8	23,0	24,2	25,3	26,5	32,8	34,2	41,3	42,5	43,7	40,1	41,5	73,0	7'87	49,5	20'2	51,9			
1500	19,1	20'5	21,4	22,5	23,7	24,8	26,0	32,2	33,7	40,5	9,14	42,8	39,4	6'07	42,3	47.4	48,5	49,7	8'05	52,0	58,2	
1450	18,7	19,8	20,9	22,1	23,2	24,3	25,5	31,7	33,1	39,6	7,04	41,9	38,8	7'07	41,6	43,0	5'77	9'87	8'67	6'09	57,1	
1400	18,2	19,4	20,5	21,6	22,7	23,8	24,9	31,1	32,5	38,7	39,8	6'07	38,1	39,5	41,0	47'4	43,8	47,6	48,7	8'67	26,0	62,2
1350	17,8	18,9	20,0	21,1	22,22	23,3	24,4	30,6	32,0	37,8	38,9	0'07	37,5	38,9	40,3	41,7	43,0	9'97	47.7	8'87	55,0	1,19
1300	17,4	18,5	19,6	20,6	21,7	22,8	23,9	30'0	31,4	37,0	38,0	39,1	36,9	38,2	39,6	41,0	42,3	43,7	45,1	47.7		
1250	17,0	18,0	1,61	20'2	21,2	22,3	23,3	24,4	25,5	36,1	37,2	38,2	36,2	37,6	38,9	40,3	41,6	43,0	44,3	46,7		
1200	13,5	14,3	15,0	19,7	20,7	21,8	22,8	27,1	27,8	28,6	29,3	30,0	35,6	36,9	9'07	41,3	42,1	8'77	43,6			
1150	13,1	13,8	14,6	19,2	20,2	21,3	22,3	26,2	26,9	27.7	28,4	29,1	34,9	36,3	39,3	40,1	8'07	41,5				
1100	12,7	13,4	14,1	14,8	19,7	20,7	21,7	25,4	26,1	26,8	27,5	28,2	28,9	29,6	38,1	38,8	39,5					
1050	12,3	13,0	13,7	14,3	19,3	20,2	21,2	24,5	25,2	25,9	26,6	27,3	28,0	28,7	36,8	37,5						
1000	11,9	12,5	13,2	13,9	14,6	9,61	20,7	23,7	24,4	25,1	25,7	26,4	27,1	27,8	28,4							
950	11,4	12,1	12,7	13,4	14,1	1,91	20,2	22.9	23,5	24,2	24,8	25,5	26,1	26,8								
900	11,0	11,6	12,3	12,9	13,6	14,2	19,6	22,0	22.7	23,3	23,9	24,6	25,2									
820	10,6	11,2	11,8	12,5	13,1	13,7	1,61	21,2	21,8	77.7	23,0	23,7										
800	10,2	10,8	11,4	12,0	12,6	13,2	13,8	20,3	20,9	21,5	22,2											
750	8,8	10,3	10,9	11,5	12,1	12,7	13,3	13,8	20,1	20,7												
700	9,3	6'6	10,5	11,0	11,6	12,2	12,7	13,3	13,9													
920	8,9	6,5	10,0	10,6	111	11,6	12,2	12,7														
009	8,5	0'6	9'6	10,1	9'01	1,1	11,7															
220	1,8	8,6	1,9	9%	10,1	10,6																
200	7.7	8,1	9,8	1,9	9%																	
450	7,2	7,7	8,2	8,7																		
700	8'9	7,3	1.7																			
-	\.t	m																				

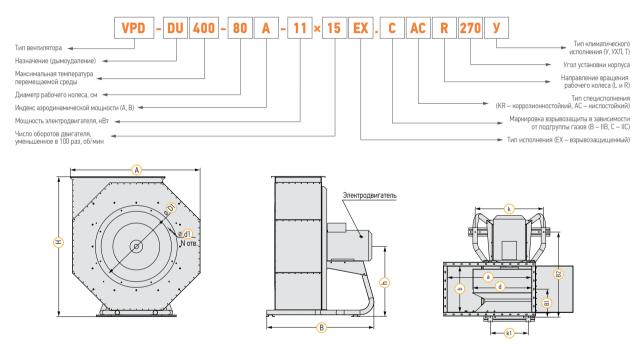
Кассета из 3-х корпусов, соединенных по длинной стороне, ось лопатки горизонтально Кассета из 4-х корпусов Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки горизонтально Кассета из 3-х корпусов, соединенных по длинной стороне, ось лопатки вертикально

Кассета из 2-х корпусов, соединенных по длинной стороне, ось лопатки вертикально

Одинарный клапан

Кассета из 2-х корпусов, соединенных по короткой стороне

Кассета из 3-х корпусов, соединенных по короткой стороне


ВЕНТИЛЯТОР РАДИАЛЬНЫЙ ДЫМОУДАЛЕНИЯ VPD DU

Предназначены для удаления возникающих при пожаре высокотемпературных дымовоздушных смесей и одновременного отвода тепла за пределы обслуживаемого помещения.

- Расход воздуха от 1 500 до 90 000 м³/ч.
- Статическое давление до 2100 Па.
- Перемещение газов с температурой до 400°С или до 600°С в течение 120 мин.
- Уникальный трубный силовой каркас корпуса, обеспечивающий высокую прочность и жесткость вентилятора.
- Высокая надежность конструкции: соединение всех элементов без использования электродуговой сварки отсутствие изломов сварных швов в результате вибраций, температурных перепадов и т.д.
- Возможность присоединения на входе как круглого, так и квадратного воздуховода.

- Состав вентилятора:
 - свободное рабочее колесо с загнутыми назад лопатками,
 - тороидальный входной патрубок (коллектор),
 - восьмигранный корпус,
 - электродвигатель.
- Климатическое исполнение У2 и Т2 по ГОСТ 15150. Для размещения по категории У1, УХЛ1 и Т1 требуется применение:
 - кожуха двигателя DTK (опция)
 - клапана защитного PRT (опция) при необходимости.
- Вариант исполнения взрывозащищенный.
- Вариант специсполнения коррозионностойкий и кислотостойкий.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Вставка гибкая квадратная GVTQ-T

Комплект виброопор по

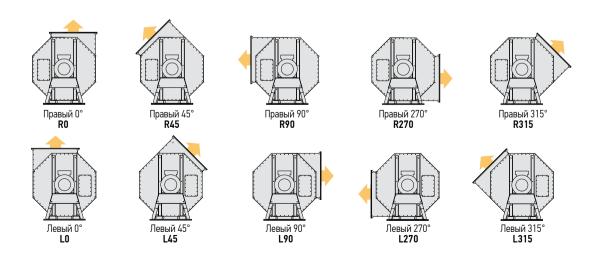
Вставка гибкая прямоугольная GVTR-T

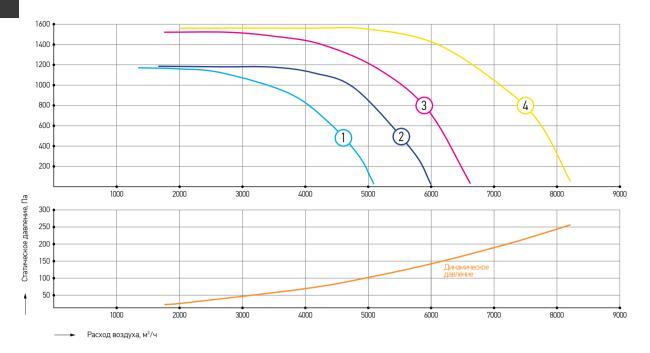
Противопожарный клапан KZO-2

Вставка гибкая круглая GVTC-T

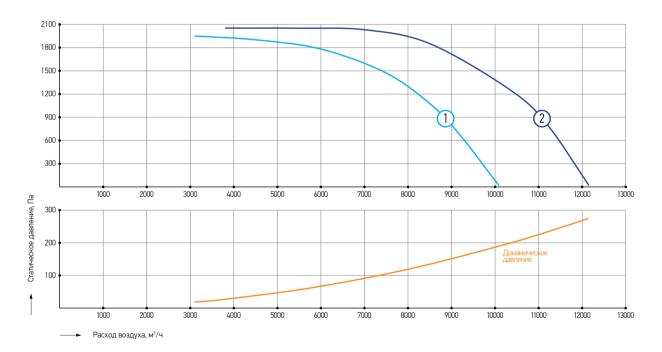
Противопожарный клапан KZO-2K

Клапан защитный

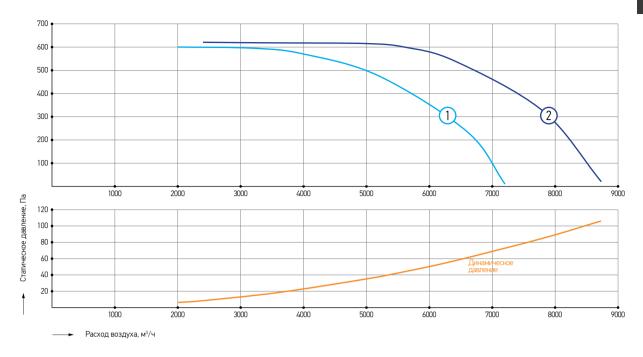

Щит управления вентиляторами ДУ и подпора UM-DU-V с ABP



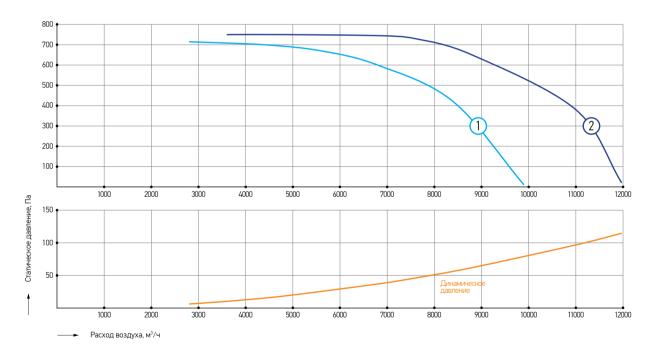
Кожух двигателя DTK


РАЗМЕРЫ И МАССА

Типоразмер	Обозначение	d, мм	А,	В,	В1, мм	В2, мм	Н,	h, мм	а, мм	b, мм	k, мм	k1, мм	D1, мм	d1, мм	N, шт	Мощность, кВт	Масса, кг
35	VPD-DU-35A-1,5x30	355	710	673	165	519	822	407	453	239	376	174	430	M6	8	1,5	51
	VPD-DU-35B-2,2x30	333	710	0/3	100	317	022	407	400	237	3/0	1/4	430	IMIO	0	2,2	52
40	VPD-DU-40A-3x30	400	710	673	165	519	822	407	453	254	376	174	430	M6	8	3	54
40	VPD-DU-40B-4x30	400	710	0/3	103	J17	022	407	433	234	3/0	1/4	430	INIO	0	4	61
45	VPD-DU-45A-5,5x30	450	820	761	180	570	922	457	524	302	434	200	490	M6	8	5,5	80
45	VPD-DU-45B-7,5x30	430	020	701	100	3/0	722	437	J24	302	434	200	470	IMO	0	7,5	90
50	VPD-DU-50A-1,1x15	500	920	811	179	582	1022	507	595	307	474	242	490	M6	8	1,1	73
	VPD-DU-50B-1,5x15	300	720	011	1/7	J02	1022	307	373	307	4/4	242	470	IVIO	0	1,5	76
56	VPD-DU-56A-2,2x15	560	1020	901	208	683	1135	570	665	362	550	262	660	M8	8	2,2	97
	VPD-DU-56B-2,2x15	360	1020	701	200	003	1133	3/0	000	302	330	202	000	IMO	0	2,2	101
	VPD-DU-63A-1,1x10															1,1	121
63	VPD-DU-63B-1,5x10	630	1120	1014	240	771	1235	620	72/	405	/2/	296	660	M8	8	1,5	125
63	VPD-DU-63A-4x15	030	1120	1014	240	//1	1233	020	736	400	626	270	000	IMIQ	0	4	135
	VPD-DU-63B-5,5x15															5,5	144
	VPD-DU-71A-2,2x10															2,2	155
71	VPD-DU-71B-2,2x10	710	1000	1007	275	0/5	10/1	/7/	007	/72	/70	220	,,,	140	_	2,2	160
71	VPD-DU-71A-7,5x15	710	1220	1087	275	845	1341	676	807	472	670	330	660	M8	8	7,5	181
	VPD-DU-71B-11x15															11	195
	VPD-DU-80A-3x10															3	212
00	VPD-DU-80B-4x10	000	1/2/	1175	205	932	1542	776	0//	-0-	7/0	420	850		8	4	229
80	VPD-DU-80A-11x15	800	1424	1175	305	932	1542	//6	946	505	760	420	850	M8	8	11	260
	VPD-DU-80B-15x15															15	285
	VPD-DU-90A-7,5x10															7,5	324
00	VPD-DU-90B-11x10	000	1/0/	1/05	05/	10/0	15/0	001	1000	F00	070	,,,,	050			11	357
90	VPD-DU-90A-22x15	900	1624	1435	354	1068	1768	901	1088	528	870	420	850	M8	8	22	385
	VPD-DU-90B-30x15															30	425
	VPD-DU-100A-4x7,5															4	365
400	VPD-DU-100B-5,5x7,5		400/			4000	40/0		4000				40.0			5,5	375
100	VPD-DU-100A-11x10	1000	1824	1461	332	1093	1968	1001	1229	567	940	504	1040	M10	8	11	390
	VPD-DU-100B-15x10															15	420
	VPD-DU-112A-7,5x7,5															7,5	533
440	VPD-DU-112B-11x7,5	4400		4505		4000			4005				40.0			11	570
112	VPD-DU-112A-18,5x10	1120	2059	1795	445	1397	2207	1122	1395	720	1040	590	1040	M10	8	18,5	572
	VPD-DU-112B-22x10															22	620
	VPD-DU-125A-15x7,5															15	659
	VPD-DU-125B-18,5x7,5															18,5	696
125	VPD-DU-125A-37x10	1250	2224	1878	475	1480	2371	1205	1511	779	1100	650	1310	M10	12	37	813
	VPD-DU-125B-45x10															45	960

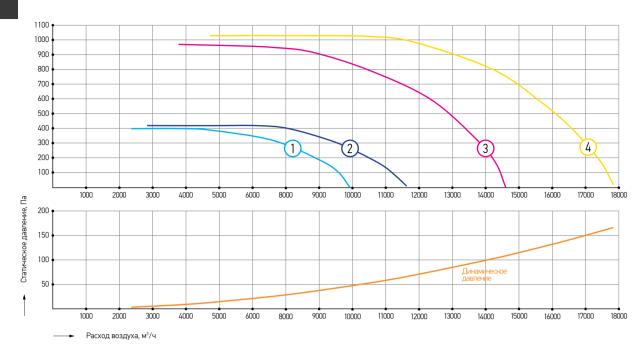


Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-35A-1,5×30	2880	380	1,5	51
2	VPD-DU-35B-2,2×30	2860	380	2,2	52
3	VPD-DU-40A-3×30	2860	380	3	54
4	VPD-DU-40B-4×30	2870	380	4	61

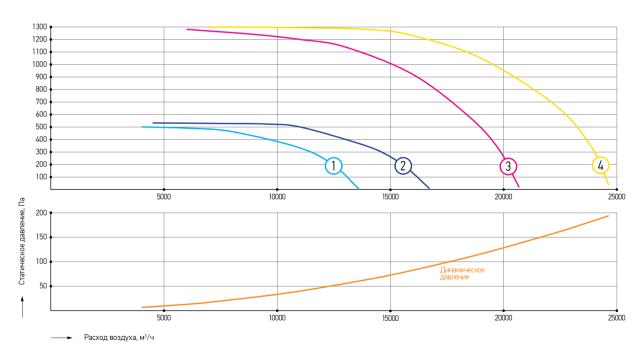


Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-45A-5,5×30	2870	380	5,5	80
2	VPD-DU-45B-7,5×30	2900	380	7,5	90

^{*} Все характеристики вентиляторов соответствуют нормальному атмосферному давлению и температуре воздуха +20 °С, плотность воздуха — 1,2 кг/м³. Для пересчета характеристик вентилятора на температуру удаляемого дыма, определенную в расчете дымоудаления, необходимо давление умножить на коэффициент K=293/(273+T), где T — значение температуры удаляемого дыма в °С. Следует иметь в виду, что потребляемая вентилятором мощность также изменяется в К раз.

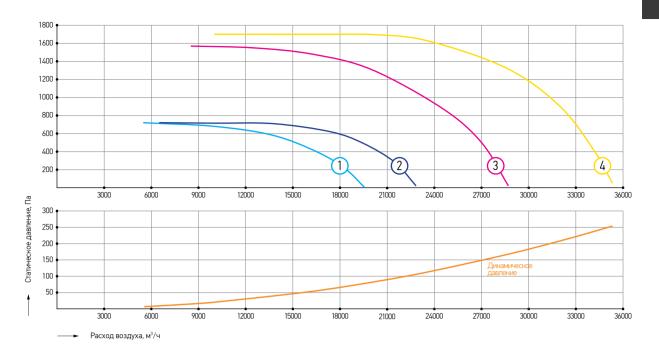


Н	омер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
	1	VPD-DU-50A-1,1×15	1420	380	1,1	73
	2	VPD-DU-50B-1.5×15	1400	380	1.5	76

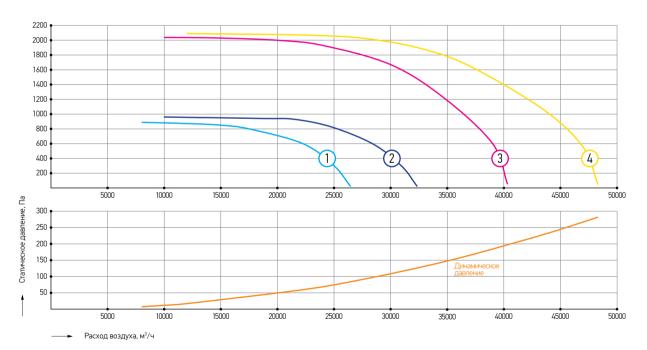


Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-56A-2,2×15	1410	380	2,2	97
2	VPD-DU-56B-2,2×15	1410	380	2,2	101

^{*} Все характеристики вентиляторов соответствуют нормальному атмосферному давлению и температуре воздуха +20 °С, плотность воздуха — 1,2 кг/м³. Для пересчета характеристик вентилятора на температуру удаляемого дыма, определенную в расчете дымоудаления, необходимо давление умножить на коэффициент K=293/(273+T), где T — значение температуры удаляемого дыма в °С. Следует иметь в виду, что потребляемая вентилятором мощность также изменяется в К раз.



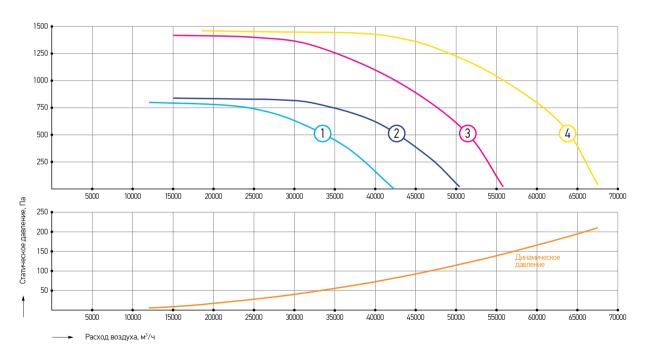
Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-63A-1,1×10	930	380	1,1	121
2	VPD-DU-63B-1,5×10	930	380	1,5	125
3	VPD-DU-63A-4×15	1420	380	4	135
4	VPD-DU-63B-5,5×15	1430	380	5,5	144



Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-71A-2,2×10	930	380	2,2	155
2	VPD-DU-71B-2,2×10	930	380	2,2	160
3	VPD-DU-71A-7,5×15	1440	380	7,5	181
4	VPD-DU-71B-11×15	1450	380	11	195

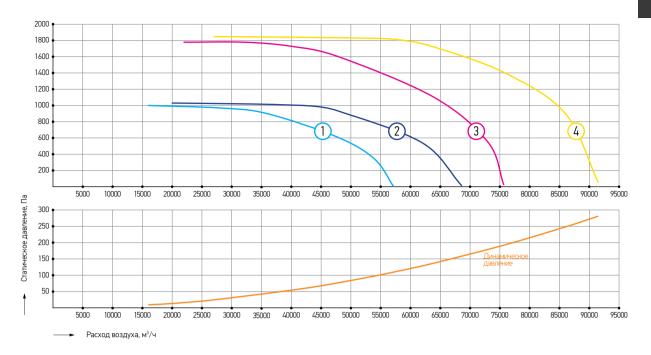
^{*} Все характеристики вентиляторов соответствуют нормальному атмосферному давлению и температуре воздуха +20 °С, плотность воздуха – 1,2 кг/м³. Для пересчета характеристик вентилятора на температуру удаляемого дыма, определенную в расчете дымоудаления, необходимо давление умножить на коэффициент K=293/(273+T), где T – значение температуры удаляемого дыма в °С. Следует иметь в виду, что потребляемая вентилятором мощность также изменяется в К раз.

Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-80A-3×10	950	380	3	212
2	VPD-DU-80B-4×10	950	380	4	229
3	VPD-DU-80A-11×15	1450	380	11	260
4	VPD-DU-80B-15×15	1460	380	15	285



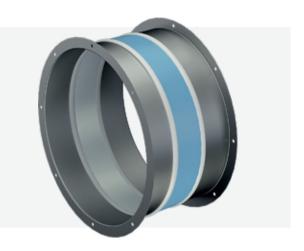
Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-90A-7,5×10	960	380	7,5	324
2	VPD-DU-90B-11×10	965	380	11	357
3	VPD-DU-90A-22×15	1465	380	22	385
4	VPD-DU-90B-30×15	1465	380	30	425

^{*} Все характеристики вентиляторов соответствуют нормальному атмосферному давлению и температуре воздуха +20 °С, плотность воздуха – 1,2 кг/м³. Для пересчета характеристик вентилятора на температуру удаляемого дыма, определенную в расчете дымоудаления, необходимо давление умножить на коэффициент K=293/(273+T), где Т – значение температуры удаляемого дыма в °С. Следует иметь в виду, что потребляемая вентилятором мощность также изменяется в К раз.

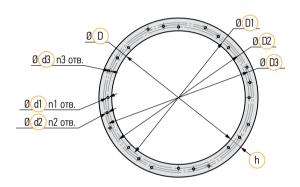


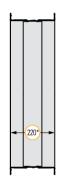
Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-100A-4×7,5	720	380	4	365
2	VPD-DU-100B-5,5×7,5	720	380	5,5	375
3	VPD-DU-100A-11×10	970	380	11	390
4	VPD-DU-100B-15×10	970	380	15	420

Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-112A-7,5×7,5	720	380	7,5	533
2	VPD-DU-112B-11×7,5	730	380	11	570
3	VPD-DU-112A-18,5×10	980	380	18,5	572
4	VPD-DU-112B-22×10	975	380	22	620

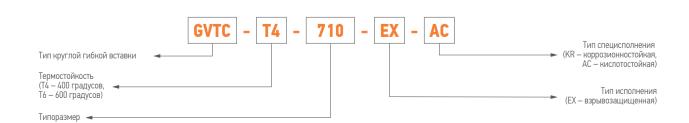

^{*} Все характеристики вентиляторов соответствуют нормальному атмосферному давлению и температуре воздуха +20 °С, плотность воздуха – 1,2 кг/м³. Для пересчета характеристик вентилятора на температуру удаляемого дыма, определенную в расчете дымоудаления, необходимо давление умножить на коэффициент K=293/(273+T), где T – значение температуры удаляемого дыма в °С. Следует иметь в виду, что потребляемая вентилятором мощность также изменяется в К раз.

Номер характеристики*	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-DU-125A-15×7,5	730	380	15	659
2	VPD-DU-125B-18,5×7,5	735	380	18,5	696
3	VPD-DU-125A-37×10	980	380	37	813
/,	VPD_DLI_125R_75×10	985	380	45	960


^{*} Все характеристики вентиляторов соответствуют нормальному атмосферному давлению и температуре воздуха +20 °С, плотность воздуха – 1,2 кг/м³. Для пересчета характеристик вентилятора на температуру удаляемого дыма, определенную в расчете дымоудаления, необходимо давление умножить на коэффициент K=293/(273+T), где T – значение температуры удаляемого дыма в °С. Следует иметь в виду, что потребляемая вентилятором мощность также изменяется в K раз.


ВСТАВКА ГИБКАЯ КРУГЛАЯ GVTC-T

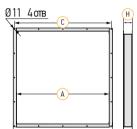
Предназначена для снижения механических вибраций, передаваемых от радиального вентилятора дымоудаления к системе воздуховодов.


- Изготавливается в 11 типоразмерах;
- Устанавливается на всасывающей стороне вентилятора;
- Вариант исполнения: термостойкая на 400 и 600 градусов (Т4 и Т6) и взрывозащищенная;
- Вариант специсполнения: коррозионностойкая и кислотостойкая.

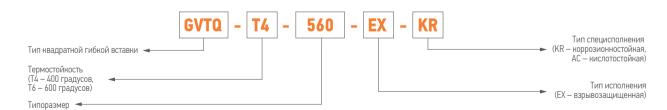
* Размер указан в растянутом состоянии

Тип вставки	D, мм	D1, мм	D2, мм	D3, мм	h, мм	d1, мм	d2, мм	d3, мм	n1, шт	n2, шт	п3, шт	Масса, кг	Наименование ради- ального вентилятора дымоудаления
GVTC-355	355	401	430	-	50	7	7	-	8	8	-	1,9	VPD DU 35
GVTC-400	400	433	451	-	40	10	10	-	8	8	-	3,8	VPD DU 40
GVTC-450/500	450	490	508	526	50	10	10	10	8	12	8	4,3	VPD DU 45/50
GVTC-560	560	643,5	660	-	63	10	10	-	8	8	-	5,6	VPD DU 56
GVTC-630	622	660	-	-	44	10	-	-	8	-	-	6,1	VPD DU 63
GVTC-710	710	750	-	-	40	10	-	-	8	-	-	6,6	VPD DU 71
GVTC-800	800	850	-	-	50	12	-	-	8	-	-	10,3	VPD DU 80
GVTC-900	900	956	-	-	50	12	-	-	8	-	-	11,2	VPD DU 90
GVTC-1000	1000	1040	1050	-	50	12	12	-	8	8	-	12,8	VPD DU 100
GVTC-1120	1120	1180	-	-	50	12	-	-	8	-	-	14,2	VPD DU 112
GVTC-1250	1250	1310	-	-	50	12	-	-	12	-	-	15,8	VPD DU 125



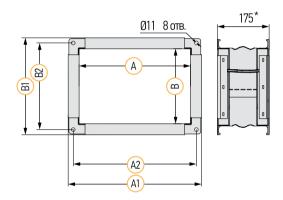

ВСТАВКА ГИБКАЯ КВАДРАТНАЯ GVTQ-T

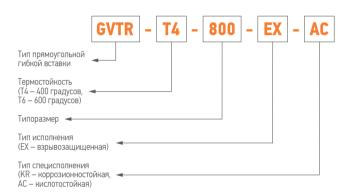
Предназначена для снижения механических вибраций, передаваемых от радиального вентилятора дымоудаления к системе воздуховодов.


- Изготавливается в 10 типоразмерах;
- Устанавливается на всасывающей стороне вентилятора;
- Для крепления квадратной гибкой вставки нужен адаптер (идет в комплекте);
- Вариант исполнения: термостойкая на 400 и 600 градусов (Т4 и Т6) и взрывозащищенная;
- Вариант специсполнения: коррозионностойкая и кислотостойкая.

* Размер указан в растянутом состоянии

T		Размерь	і вставки			Pa	змеры адапт	ера		Наименование радиального	
Тип вставки	А, мм	В, мм	С, мм	Масса, кг	А, мм	В, мм	С, мм	Н, мм	Масса, кг	вентилятора дымоудаления	
GVTQ-355/400	500	560	530	6,2	478	558	530	85	4	VPD DU 35/40	
GVTQ-450/500	550	610	580	6,9	548	618	580	85	4,4	VPD DU 45/50	
GVTQ-560	650	710	680	10,3	626	706	680	94	5,6	VPD DU 56	
GVTQ-630	750	810	780	11,9	738	818	780	85	6	VPD DU 63	
GVTQ-710	800	860	830	12,6	788	868	830	85	6,4	VPD DU 71	
GVTQ-800	950	1010	980	15	918	1008	980	85	7,8	VPD DU 80	
GVTQ-900	1000	1060	1030	15,8	988	1078	1050	85	8,3	VPD DU 90	
GVTQ-1000	1100	1160	1130	17,5	1100	1180	1130	105	10,3	VPD DU 100	
GVTQ-1120	1250	1310	1280	20,1	1250	1330	1280	105	11,7	VPD DU 112	
GVTQ-1250	1400	1460	1430	21,5	1400	1490	1430	105	13,2	VPD DU 125	

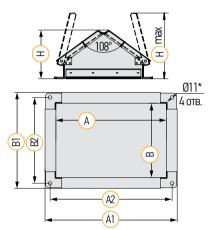


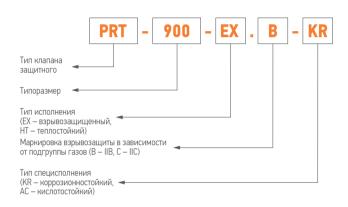

ВСТАВКА ГИБКАЯ ПРЯМОУГОЛЬНАЯ GVTR-T

Предназначена для снижения механических вибраций, передаваемых от радиального вентилятора дымоудаления к системе воздуховодов.

- Изготавливается в 12 типоразмерах;
- Устанавливается на стороне нагнетания вентилятора;
- Вариант исполнения: термостойкая на 400 и 600 градусов (Т4 и Т6) и взрывозащищенная;
- Вариант специсполнения: коррозионностойкая и кислотостойкая.

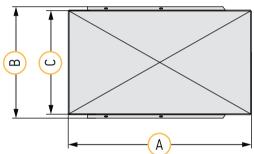
* Размер указан в растянутом состоянии

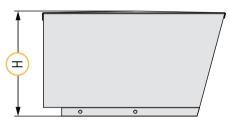

Тип вставки	А, мм	А1, мм	В, мм	В1, мм	А2, мм	В2, мм	Масса, кг	Наименование радиального вентилятора дымоудаления
GVTR-355	455	515	240	300	485	270	3,3	VPD DU 35
GVTR-400	455	515	255	315	485	285	3,5	VPD DU 40
GVTR-450	535	595	315	375	565	345	4,4	VPD DU 45
GVTR-500	605	665	320	380	635	350	4,7	VPD DU 50
GVTR-560	675	735	375	435	705	405	5,4	VPD DU 56
GVTR-630	745	805	415	475	775	445	6,1	VPD DU 63
GVTR-710	815	875	460	520	845	490	6,7	VPD DU 71
GVTR-800	955	1015	520	580	985	550	9,6	VPD DU 80
GVTR-900	1100	1160	545	605	1130	575	10,5	VPD DU 90
GVTR-1000	1240	1300	580	640	1270	610	11,5	VPD DU 100
GVTR-1120	1405	1465	735	795	1435	765	13,8	VPD DU 112
GVTR-1250	1520	1580	795	855	1550	825	15,1	VPD DU 125


КЛАПАН ЗАЩИТНЫЙ PRT

Предназначен для защиты радиальных вентиляторов дымоудаления от осадков, установленных под открытым небом, с углом поворота корпуса 0°, 45° и 315°.

- Изготавливается в 12 типоразмерах;
- Устанавливается на выходной патрубок вентилятора;
- Вариант исполнения: взрывозащищенный;
- Вариант специсполнения: коррозионностойкий и кислотостойкий.


Тип защитного клапана	А, мм	А1, мм	А2, мм	В, мм	В1, мм	В2,мм	Н, мм	Нтах, мм	Масса, кг	Наименование радиального вентилятора дымоудаления
PRT-355	455	515	485	240	300	270	150	203	3,4	VPD DU 35
PRT-400	455	515	485	255	315	285	155	210	3,5	VPD DU 40
PRT-450	535	595	565	315	375	345	178	248	3,9	VPD DU 45
PRT-500	605	665	635	320	380	350	180	253	4,2	VPD DU 50
PRT-560	675	735	705	375	435	405	200	285	5,2	VPD DU 56
PRT-630	745	805	775	415	475	445	213	308	5,8	VPD DU 63
PRT-710	815	875	845	460	520	490	229	335	6,5	VPD DU 71
PRT-800	955	1015	985	520	580	550	252	373	8,1	VPD DU 80
PRT-900	1100	1160	1130	545	605	575	260	386	8,8	VPD DU 90
PRT-1000	1240	1300	1270	580	640	610	274	412	10,5	VPD DU 100
PRT-1120	1405	1465	1435	735	795	765	327	506	13,7	VPD DU 112
PRT-1250	1520	1580	1550	795	855	825	348	545	15,4	VPD DU 125

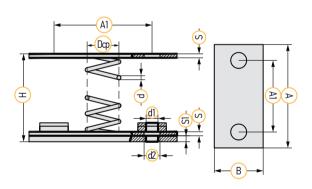

КОЖУХ ДВИГАТЕЛЯ DTK

Предназначен для защиты электродвигателя радиального вентилятора дымоудаления от атмосферных осадков

- Изготавливаются в 11 типоразмерах;
- Вариант специсполнения:
 коррозионностойкий и кислотостойкий.

Тип кожуха	А, мм	В, мм	С, мм	Н, мм	Масса, кг	Наименование радиального вентилятора дымоудаления
DTK-355/400	461	304	291	366	3,1	VPD DU 35/40
DTK-450	591	337	324	398	4,4	VPD DU 45
DTK-500	446	254	236	343	2,9	VPD DU 50
DTK-560	516	314	296	368	3,9	VPD DU 56
DTK-630	606	354	336	387	4,8	VPD DU 63
DTK-710	686	376	381	476	6,8	VPD DU 71
DTK-800	736	444	449	556	8,5	VPD DU 80
DTK-900	836	490	495	604	10,7	VPD DU 90
DTK-1000	866	582	588	635	18,5	VPD DU 100
DTK-1120	961	674	680	723	23,4	VPD DU 112
DTK-1250	1066	735	740	780	27,7	VPD DU 125

КОМПЛЕКТ ВИБРООПОР DO

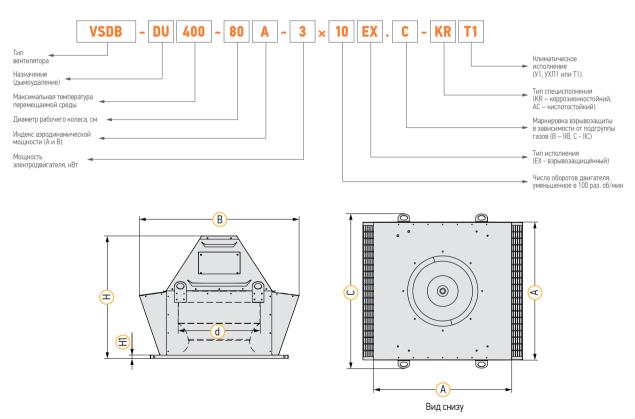


Предназначен для снижения динамической нагрузки, передаваемой от вентилятора дымоудаления на несущую конструкцию

- Виброизолятор ДО состоит из цилиндрической пружины, к торцам которой жестко прикреплены штампованные стальные пластины;
- Виброизоляторы Д0 предназначены для монтажа вентилятора в помещении.

Тип виброи-	A,	A1.	В,	H,	S.	S1.	Дср,	d.	d1.	d1. d2. Вертикальная		Нагрузка		Осадка под нагрузкой, мм		
золятора	ММ	ММ	мм	ММ	MM	ММ	мм	MM	ММ	MM	жесткость, кг/см²	Рабочая	Предельная	Рабочая	Предельная	Масса, кг
Д0-39	110	80	70	98	2	5	40	4	8,4	12	61	22,3	27,8	36	45	0,41
Д0-40	130	100	90	123	3	10	50	5	8,4	12	81	34,6	43,2	41,7	52	0,94
Д0-41	130	100	90	138	3	10	54	6	10,5	14	124	55	68,7	43,4	54	1,03
Д0-42	150	120	110	180	3	10	72	8	10,5	14	165	96	120	57,2	72	1,79
Д0-43	160	130	120	202	3	10	80	10	10,5	14	294	168	210	56	70	2,46
Д0-44	180	150	140	236	3	10	96	12	10,5	14	357	243	303	66,5	83	3,74
Д0-45	220	180	170	290	3	10	120	15	13	16	442	380	475	84,5	106	6,58

Комплект виброопор	Тип виброизолятора	Кол-во опор в комплекте	Наименование вентилятора дымоудаления
DO-355/400	Д0-39	4	VPD-DU 35/40
D0-450/500	Д0-40	4	VPD-DU 45/50
DO-560/630	Д0-41	4	VPD-DU 56/63
D0-710	Д0-42	4	VPD-DU 71
D0-800	Д0-43	4	VPD-DU 80
DO-900/1000	Д0-43	5	VPD-DU 90/100
DO-1120	Д0-44	5	VPD-DU 112
DO-1250	Д0-45	5	VPD-DU 125



ВЕНТИЛЯТОР КРЫШНЫЙ ДЫМОУДАЛЕНИЯ С ВЫБРОСОМ В СТОРОНУ VSDB DU

Предназначены для удаления возникающих при пожаре высокотемпературных дымовоздушных смесей и одновременного отвода тепла за пределы обслуживаемого помещения.

- 12 типоразмеров с расходом воздуха от 1 500 до 90 000 м³/ч;
- Статическое давление до 2100 Па;
- Защита от перегрева двигателя осуществлена рядом конструктивных мер:
 - Воздушная прослойка между опорой двигателя и проточной частью вентилятора,
 - Между фланцем двигателя и опорой установлена прокладка из теплостойкого материала;
- Перемещение газов с температурой до 400°С или до 600°С в течение 120 мин;
- Климатическое исполнение У1, УХЛ1 и Т1 по ГОСТ 15150;
- Группа механического исполнения М3;
- Вариант исполнения взрывозащищенный;
- Вариант специсполнения коррозионностойкий и кислотостойкий.

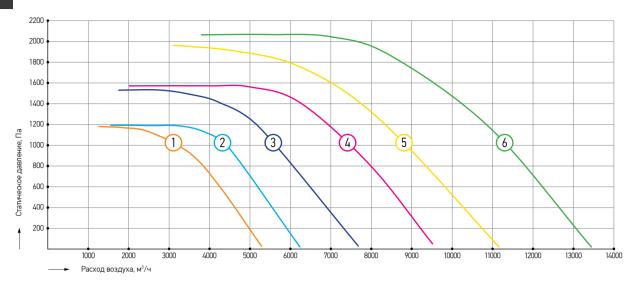
ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Стакан монтажный SMV

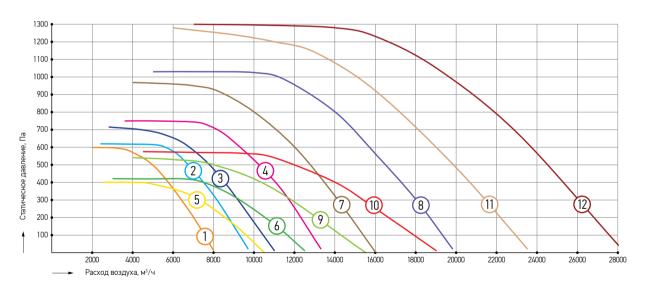
Адаптер SKV для крепления противопожарных клапанов

Поддон PV

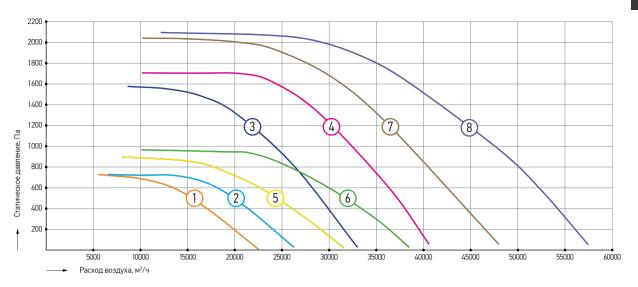
Противопожарный клапан KZO-2

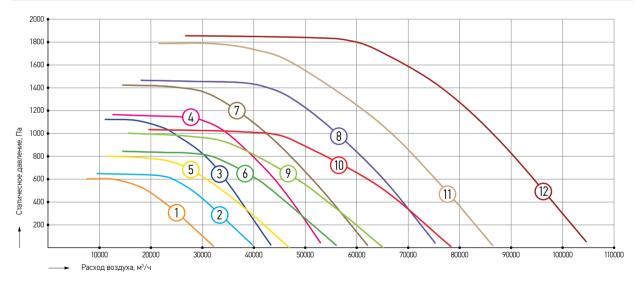


Щит управления вентиляторами ДУ и подпора UM-DU-V с ABP


РАЗМЕРЫ И МАССА

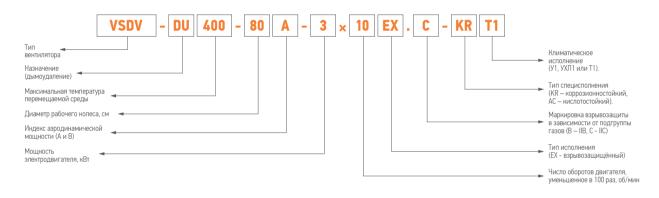
Типоразмер	Обозначение	d, мм	А, мм	В, мм	С, мм	Н, мм	Н1, мм	Мощность, кВт	Масса, кг
25	VSDB DU-35A-1,5×30	255	F0./	E0.	/00	(0)	00	1,5	43
35	VSDB DU-35B-2,2×30	355	596	726	638	634	20	2,2	45
/0	VSDB DU-40A-3×30	/00	/27	77/	700	7//	20	3	54
40	VSDB DU-40B-4×30	400	637	776	700	744	20	1,5 2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 15 22 30 4 5,5 11 15 22 30 4 5,5 11 15 7,5 11 15 7,5 11	58
,-	VSDB DU-45A-5,5×30	/50	,,,,	01/	F00	005	0.5	5,5	101
45	VSDB DU-45B-7,5×30	450	665	816	723	885	25	7,5	104
F0	VSDB DU-50A-1,1×15	500	501	0//	200	101	0.5	1,5 2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 18,5 2,2	76
50	VSDB DU-50B-1,5×15	500	794	966	898	694	25	1,5	80
- ·	VSDB DU-56A-2,2×15	F (0	0/0	1000	1050	050	0.5	1,5 2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 18,5 22 15 18,5 37	108
56	VSDB DU-56B-2,2×15	560	942	1090	1052	870	25	2,2	110
	VSDB DU-63A-1,1×10							1,1	101
	VSDB DU-63B-1,5×10							1,5 2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 18,5 22 15 18,5 37	103
63	VSDB DU-63A-4×15	630	1036	1234	1140	1055	25	4	115
	VSDB DU-63B-5,5×15							1,1 1,5 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5	136
	VSDB DU-71A-2,2×10							2,2	141
	VSDB DU-71B-2,2×10							2,2	146
71	VSDB DU-71A-7,5×15	710	1087	1087 1400 1190 1101	25	7,5	194		
	VSDB DU-71B-11×15	1						1,5 2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 15 7,5 11 18,5 22 15 18,5 37	206
	VSDB DU-80A-3×10							3 4	210
00	VSDB DU-80B-4×10	_		4580	40.40	4005	25 2.2 7.5 11 3 3 4 4 11 15 7.5 1505 30 11	4	215
80	VSDB DU-80A-11×15	800	1252	1578	1362	1285		11	248
	VSDB DU-80B-15×15	-						2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 18,5 22 15 18,5	281
	VSDB DU-90A-7,5×10							2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 18,5 22 15 18,5	252
	VSDB DU-90B-11×10							11	287
90	VSDB DU-90A-22×15	900	1414	1762	1544	1505	30	22	352
	VSDB DU-90B-30×15	-						1,5 2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 18,5 2,2 15 18,5 37	401
	VSDB DU-100A-4×7,5							4	302
	VSDB DU-100B-5,5×7,5	-						1,5 2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 18,5 22 15 18,5 37	310
100	VSDB DU-100A-11×10	1000	1592	2003	1722	1484	30		358
	VSDB DU-100B-15×10	1							388
	VSDB DU-112A-7,5×7,5							7,5	387
	VSDB DU-112B-11×7,5	1							412
112	VSDB DU-112A-18,5×10	1120	1800	2326	1930	1797	35	18,5	422
	VSDB DU-112B-22×10							2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22 30 4 5,5 11 15 7,5 11 15 7,5 11 18,5 22 15 18,5 37	467
	VSDB DU-125A-15×7,5								651
	VSDB DU-125B-18,5×7,5	1					2,2 3 4 25 5,5 7,5 1,1 1,5 25 2,2 2,2 1,1 2,5 4 5,5 4 5,5 2,2 2,2 2,2 7,5 11 33 4 11 15 7,5 11 22 30 4 30 4 30 4 30 31 35 11 15 7,5 11 15 7,5 11 15 37 37		681
125	VSDB DU-125A-37×10	1250	2000	2482	2130	1919	35		779
	VSDB DU-125B-45×10	-							901

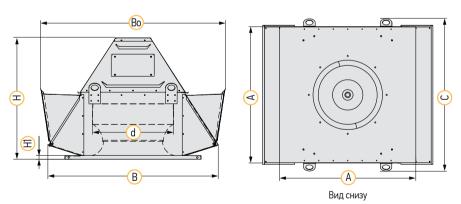

Все характеристики вентиляторов соответствуют нормальному атмосферному давлению и температуре воздуха +20 °C, плотность воздуха – 1,2 кг/м². Для пересчета характеристик вентилятора на температуру удаляемого дыма, определенную в расчете дымоудаления, необходимо давление умножить на коэффициент К=293/(273+T), где Т – значение температуры удаляемого дыма в °C. Следует иметь в виду, что потребляемая вентилятором мощность также изменяется в К раз.


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDB-DU-35A-1,5×30	2880	380	1,5	43
2	VSDB-DU-35B-2,2×30	2860	380	2,2	45
3	VSDB-DU-40A-3×30	2860	380	3	54
4	VSDB-DU-40B-4×30	2870	380	4	58
5	VSDB-DU-45A-5,5×30	2870	380	5,5	101
6	VSDB-DU-45B-7,5×30	2880	380	7,5	104

Номер характеристики	Наименование	Обороты фактические, об/мин	бороты фактические, об/мин Напряжение питания двигателя, В		Масса, кг
1	VSDB-DU-50A-1,1×15	1420	380	1,1	76
2	VSDB-DU-50B-1,5×15	1400	380	1,5	80
3	VSDB-DU-56A-2,2×15	1410	380	2,2	108
4	VSDB-DU-56B-2,2×15	1410	380	2,2	110
5	VSDB-DU-63A-1,1×10	930	380	1,1	101
6	VSDB-DU-63B-1,5×10	930	380	1,5	103
7	VSDB-DU-63A-4×15	1420	380	4	115
8	VSDB-DU-63B-5,5×15	1430	380	5,5	136
9	VSDB-DU-71A-2,2×10	930	380	2,2	141
10	VSDB-DU-71B-2,2×10	930	380	2,2	146
11	VSDB-DU-71A-7,5×15	1440	380	7,5	194
12	VSDB-DU-71B-11×15	1450	380	11	206

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDB-DU-80A-3×10	950	380	3	210
2	VSDB-DU-80B-4×10	950	380	4	215
3	VSDB-DU-80A-11×15	1450	380	11	248
4	VSDB-DU-80B-15×15	1460	380	15	281
5	VSDB-DU-90A-7,5×10	960	380	7,5	252
6	VSDB-DU-90B-11×10	965	380	11	287
7	VSDB-DU-90A-22×15	1465	380	22	352
8	VSDB-DU-90B-30×15	1465	380	30	401


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDB-DU-100A-4×7,5	720	380	4	302
2	VSDB-DU-100B-5,5×7,5	720	380	5,5	310
3	VSDB-DU-100A-11×10	970	380	11	358
4	VSDB-DU-100B-15×10	970	380	15	388
5	VSDB-DU-112A-7,5×7,5	720	380	7,5	387
6	VSDB-DU-112B-11×7,5	730	380	11	412
7	VSDB-DU-112A-18,5×10	980	380	18,5	422
8	VSDB-DU-112B-22×10	975	380	22	467
9	VSDB-DU-125A-15×7,5	730	380	15	651
10	VSDB-DU-125B-18,5×7,5	735	380	18,5	681
11	VSDB-DU-125A-37×10	980	380	37	779
12	VSDB-DU-125B-45×10	985	380	45	901


ВЕНТИЛЯТОР КРЫШНЫЙ ДЫМОУДАЛЕНИЯ С ВЫБРОСОМ ВВЕРХ VSDV DU

Предназначены для удаления возникающих при пожаре высокотемпературных дымовоздушных смесей и одновременного отвода тепла за пределы обслуживаемого помещения.

- 12 типоразмеров с расходом воздуха от 1 500 до 90 000 м³/ч;
- Статическое давление до 2100 Па;
- Защита от перегрева двигателя осуществлена рядом конструктивных мер:
 - Воздушная прослойка между опорой двигателя и проточной частью вентилятора,
 - Между фланцем двигателя и опорой установлена прокладка из теплостойкого материала;
- Перемещение газов с температурой до 400°C или до 600°C в течение 120 мин;
- Климатическое исполнение У1, УХЛ1 и Т1 по ГОСТ 15150;
- Группа механического исполнения М3;
- Вариант исполнения взрывозащищенный;
- Вариант специсполнения коррозионностойкий и кислотостойкий.

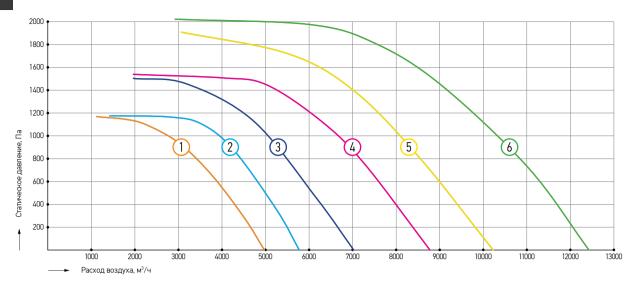
ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Стакан монтажный SMV

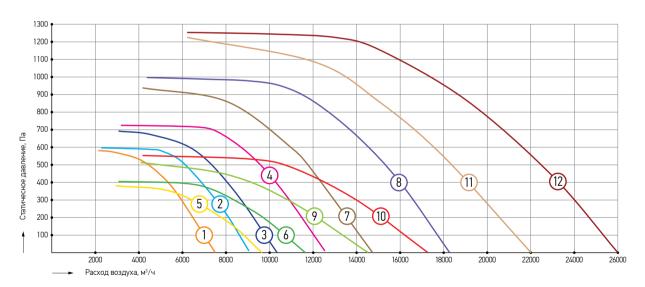
Адаптер SKV для крепления противопожарных клапанов

Поддон PV

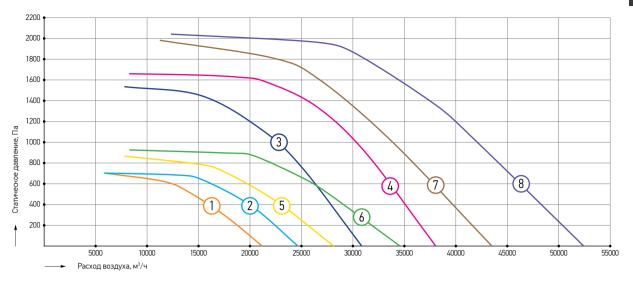
Противопожарный клапан KZO-2

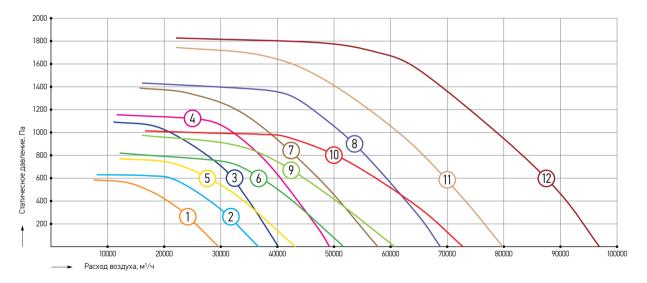


Щит управления вентиляторами ДУ и подпора UM-DU-V с ABP


РАЗМЕРЫ И МАССА

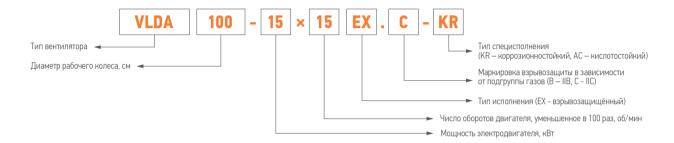
Типоразмер	Обозначение	d, мм	А, мм	В, мм	Во, мм	С, мм	Н, мм	Н1, мм	Мощность, кВт	Масса, кг
35	VSDV-DU-35A-1,5×30	255	FO/	725	75/	/20	/2/	20	1,5	44
35	VSDV-DU-35B-2,2×30	355	596	725	756	638	634	20	1,5 2,2 3 4 5,5 7,5 1,1 1,5 2,2 2,2 1,1 1,5 4 5,5 2,2 2,2 7,5 11 3 4 11 15 7,5 11 22	46
40	VSDV-DU-40A-3×30	/00	/27	790	022	700	744	20	3	54
40	VSDV-DU-40B-4×30	400	637	/90	832	700	/44	20	4	59
/ 5	VSDV-DU-45A-5,5×30	450	665	855	908	723	885	25	5,5	101
45	VSDV-DU-45B-7,5×30	450	000	800	708	/23	883	25	7,5	104
50	VSDV-DU-50A-1,1×15	Enn	70/	995	10//	898	/0/	25	1,1	78
50	VSDV-DU-50B-1,5×15	500	794	773	1064	878	694	25	1,5	80
E/	VSDV-DU-56A-2,2×15	560	942	1180	1245	1052	824	25	2,2	108
56	VSDV-DU-56B-2,2×15	360	742	1180	1243	1032	824	25	2,2	111
	VSDV-DU-63A-1,1×10								1,1	101
/2	VSDV-DU-63B-1,5×10	630	1036	1305	1389	11/0	1055	25	1,5	103
63	VSDV-DU-63A-4×15	030	1030	1303	1307	1140	1140 1055	25	4	115
	VSDV-DU-63B-5,5×15								5,5	136
	VSDV-DU-71A-2,2×10								2,2	141
71	VSDV-DU-71B-2,2×10	710	1087	1445	1565	1190	1101	25	2,2	146
71	VSDV-DU-71A-7,5×15	/10	1007	1443	1303	1170	1101	25	7,5	194
	VSDV-DU-71B-11×15								7,5 11 3 4	206
	VSDV-DU-80A-3×10	800	1252	1665	1832		1216	25	3	210
80	VSDV-DU-80B-4×10					1362			4	215
00	VSDV-DU-80A-11×15	000	1232			1302			11	248
	VSDV-DU-80B-15×15								15	281
	VSDV-DU-90A-7,5×10								11 15 7,5	252
90	VSDV-DU-90B-11×10	900	1414	1865	2100	1544	1505	30		287
70	VSDV-DU-90A-22×15	700	1414	1000	2100	1344	1303	30	22	352
	VSDV-DU-90B-30×15								30	401
	VSDV-DU-100A-4×7,5								4	302
100	VSDV-DU-100B-5,5×7,5	1000	1592	1085	21/2	1722	722 1484	30	5,5	315
100	VSDV-DU-100A-11×10	1000	1372	1975	2163	1/22		30	11	358
	VSDV-DU-100B-15×10								15	388
	VSDV-DU-112A-7,5×7,5								7,5	387
112	VSDV-DU-112B-11×7,5	1120	1000	2170	2450	1930	1000	25	11	412
112	VSDV-DU-112A-18,5×10	J-112A-18,5×10 1120 1800 2170 2450 1930 1797	35	18,5	422					
	VSDV-DU-112B-22×10								22	472
	VSDV-DU-125A-15×7,5						30 1919	25	15	651
125	VSDV-DU-125B-18,5×7,5	1250	2000	2345	2587	2130			18,5	687
120	VSDV-DU-125A-37×10	1250	2000	2343	230/			35	37	779
	VSDV-DU-125B-45×10								45	901

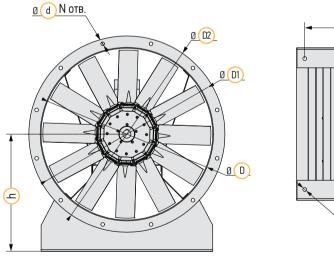

Все характеристики вентиляторов соответствуют нормальному атмосферному давлению и температуре воздуха +20 °C, плотность воздуха – 1,2 кг/м². Для пересчета характеристик вентилятора на температуру удаляемого дыма, определенную в расчете дымоудаления, необходимо давление умножить на коэффициент К=293/(273+T), где Т – значение температуры удаляемого дыма в °C. Следует иметь в виду, что потребляемая вентилятором мощность также изменяется в К раз.

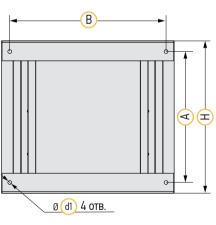

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDV-DU-35A-1,5×30	2880	380	1,5	44
2	VSDV-DU-35B-2,2×30	2860	380	2,2	46
3	VSDV-DU-40A-3×30	2860	380	3	54
4	VSDV-DU-40B-4×30	2870	380	4	59
5	VSDV-DU-45A-5,5×30	2870	380	5,5	101
6	VSDV-DU-45B-7,5×30	2900	380	7,5	104

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDV-DU-50A-1,1×15	1420	380	1,1	78
2	VSDV-DU-50B-1,5×15	1400	380	1,5	80
3	VSDV-DU-56A-2,2×15	1410	380	2,2	108
4	VSDV-DU-56B-2,2×15	1410	380	2,2	111
5	VSDV-DU-63A-1,1×10	930	380	1,1	101
6	VSDV-DU-63B-1,5×10	930	380	1,5	103
7	VSDV-DU-63A-4×15	1420	380	4	115
8	VSDV-DU-63B-5,5×15	1430	380	5,5	136
9	VSDV-DU-71A-2,2×10	930	380	2,2	141
10	VSDV-DU-71B-2,2×10	930	380	2,2	146
11	VSDV-DU-71A-7,5×15	1440	380	7,5	194
12	VSDV-DU-71B-11×15	1450	380	11	206

	ı	ı	I	I.	I
Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDV-DU-80A-3×10	950	380	3	206
2	VSDV-DU-80B-4×10	950	380	4	215
3	VSDV-DU-80A-11×15	1450	380	11	248
4	VSDV-DU-80B-15×15	1460	380	15	281
5	VSDV-DU-90A-7,5×10	960	380	7,5	252
6	VSDV-DU-90B-11×10	965	380	11	287
7	VSDV-DU-90A-22×15	1465	380	22	352
8	VSDV-DU-90B-30×15	1465	380	30	401


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDV-DU-100A-4×7,5	720	380	4	302
2	VSDV-DU-100B-5,5×7,5	720	380	5,5	315
3	VSDV-DU-100A-11×10	970	380	11	358
4	VSDV-DU-100B-15×10	970	380	15	388
5	VSDV-DU-112A-7,5×7,5	720	380	7,5	387
6	VSDV-DU-112B-11×7,5	730	380	11	412
7	VSDV-DU-112A-18,5×10	975	380	18,5	422
8	VSDV-DU-112B-22×10	975	380	22	472
9	VSDV-DU-125A-15×7,5	730	380	15	651
10	VSDV-DU-125B-18,5×7,5	735	380	18,5	687
11	VSDV-DU-125A-37×10	980	380	37	779
12	VSDV-DU-125B-45×10	985	380	45	901


ОСЕВОЙ ВЕНТИЛЯТОР ПОДПОРА VLDA



Применяются в системах подпора противодымной защиты систем вентиляции жилых, промышленных и общественных зданий.

- 11 типоразмеров с расходом воздуха от 2500 до 110 000 м³/ч.
- Статическое давление до 1 400 Па.
- Перемещение газовоздушной смеси с температурой от -40 до +60°C.
- Вентиляторы пригодны для работы как с короткой сетью воздуховодов, так и без нее.
- Облегченное рабочее колесо с полиамидными лопатками с заданным углом поворота установлено непосредственно на валу трехфазного асинхронного электродвигателя.
- Единая конструкция фланцев и корпуса с установленной внутри подмоторной плитой без использования сварки.
- Все корпусные и опорные элементы вентилятора из оцинкованной стали марки 08ПС.
- Монтаж вентиляторов возможен в горизонтальном и вертикальном положении оси. При горизонтальном исполнении комплектуются опорами. Климатическое исполнение У1 по ГОСТ 15150.
- Группа механического исполнения М3.

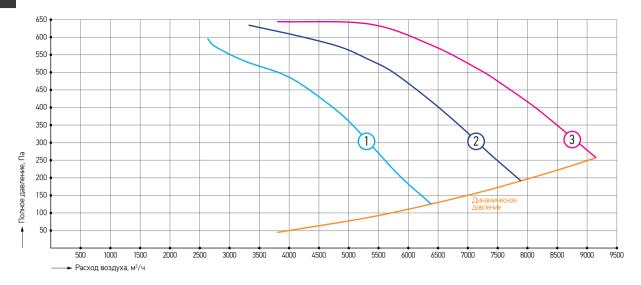
Вид снизу

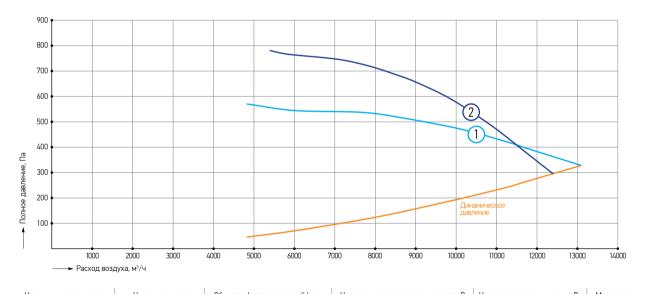
ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Козырек защитный ZKV

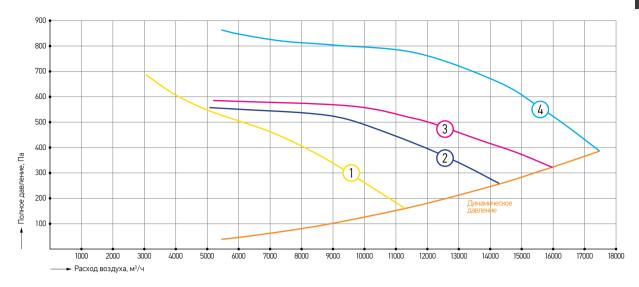
Вставки гибкие круглые GHVK

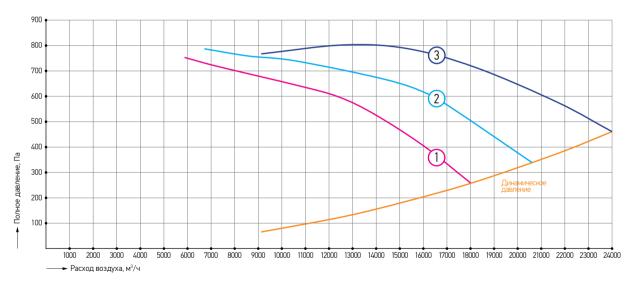
Противопожарный клапан KZO-2

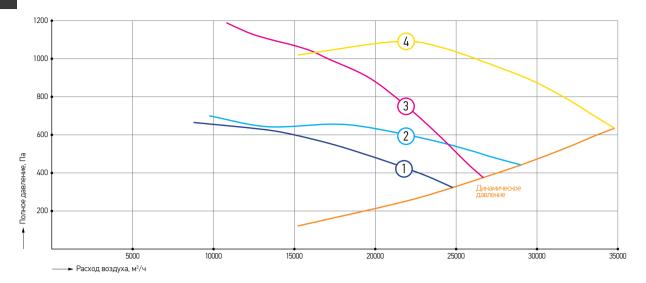

Противопожарный клапан KZO-2K

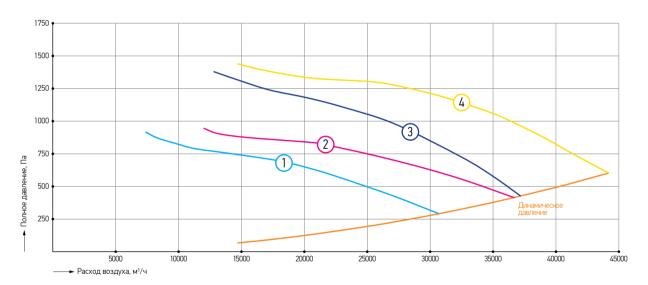

Щит управления вентиляторами ДУ и подпора UM-DU-V с ABP

РАЗМЕРЫ И МАССА

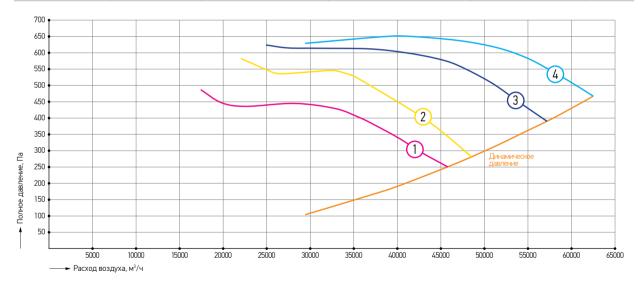

Типоразмер	Обозначение	D, мм	D1, мм	D2, мм	Н, мм	һ, мм	А, мм	В, мм	d1, мм	d, мм	N, шт	Масса, кг						
	VLDA 40-1,1×30											27						
40	VLDA 40-1,5×30	400	450	480	450	285	377	350				29						
	VLDA 40-2,2×30									10	8	31						
45	VLDA 45-2,2×30	/ 50	500	E20		212		/00				36						
45	VLDA 45-3×30	450	500	530		312		400				38						
	VLDA 50-1,5×30					350							36					
50	VLDA 50-2,2×30	Enn	550	580				450				38						
50	VLDA 50-3×30	500	330	300		330	427	430	12.5			40						
	VLDA 50-4×30				500			427		12,5	12,5		12	45				
	VLDA 56-3×30											46						
56	VLDA 56-4×30	560	610	640		382		510				51						
	VLDA 56-5,5×30											60						
	VLDA 63-4×30					420				580				54				
/2	VLDA 63-5,5×30	/22	/00	710			/62	E00							63			
63	VLDA 63-7,5×30	622	680	710	620	420	E/7	360										91
	VLDA 63-11×30				020		547					118						
	VLDA 71-5,5×30				500		420			12		70						
71	VLDA 71-7,5×30	710	740	700	420	/00	E/0	650							96			
71	VLDA 71-11×30	710	760	790	620	480	540						123					
	VLDA 71-15×30				800		720						166					
	VLDA 80-4×15				500	500	410								83			
	VLDA 80-5,5×15								14						90			
	VLDA 80-7,5×15				/20		E20		14			112						
00	VLDA 80-11×15	000	850	900	620	500	530	720			16	148						
80	VLDA 80-11×30	800	030	700		300		730				139						
	VLDA 80-15×30											184						
	VLDA 80-18.5×30				800		710							193				
	VLDA 80-22×30]										215						
	VLDA 90-5,5×15											110						
00	VLDA 90-7,5×15	000	950	1000	620	FEO	530	020					146					
90	VLDA 90-11×15	900	750	1000		550		830				158						
	VLDA 90-15×15	1			800	1	710					203						
	VLDA 100-4×15				500		410					113						
100	VLDA 100-7,5×15	1000	1050	1100	420	400	Eau	020				164						
100	VLDA 100-11×15	1000	1050	1100	620	600	530	930				176						
	VLDA 100-15×15						710					224						
	VLDA 112-15×15				000				1,	1,		234						
112	VLDA 112-18,5×15	1120	1170	1220	800	650	688	960	16	14		254						
	VLDA 112-22×15]										272						
	VLDA 125-7,5×10				620		508					200						
	VLDA 125-11×10										2/	255						
	VLDA 125-15×10]			000		/00				24	277						
125	VLDA 125-22×15	1250	1300	1350	1350	1350	1350	1350	1350	1350	800	700	688	960				287
	VLDA 125-30×15]										320						
	VLDA 125-37×15				0/0		020					384						
	VLDA 125-45×15				940		828					414						

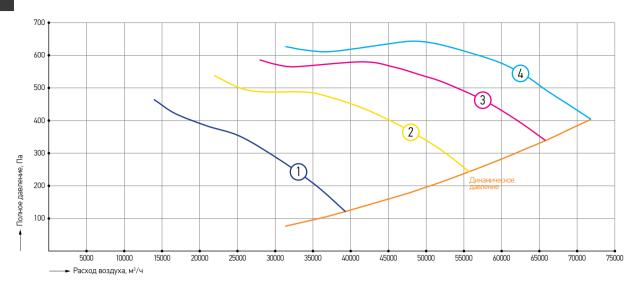

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 40-1,1×30	2800	380	1,1	27
2	VLDA 40-1,5×30	2880	380	1,5	29
3	VLDA 40-2,2×30	2860	380	2,2	31

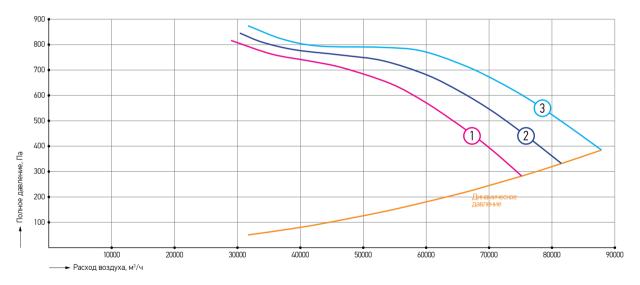

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 45-2,2×30	2860	380	2,2	36
2	VLDA 45-3×30	2860	380	3	38

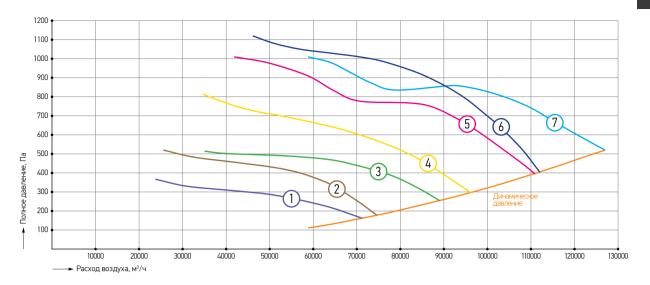

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 50-1,5×30	2880	380	1,5	36
2	VLDA 50-2,2×30	2860	380	2,2	38
3	VLDA 50-3×30	2860	380	3	40
4	VLDA 50-4×30	2850	380	4	45

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 56-3×30	2860	380	3	46
2	VLDA 56-4×30	2850	380	4	51
3	VLDA 56-5,5×30	2900	380	5,5	60


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 63-4×30	2850	380	4	54
2	VLDA 63-5,5×30	2850	380	5,5	63
3	VLDA 63-7,5×30	2900	380	7,5	91
4	VLDA 63-11×30	2910	380	11	118

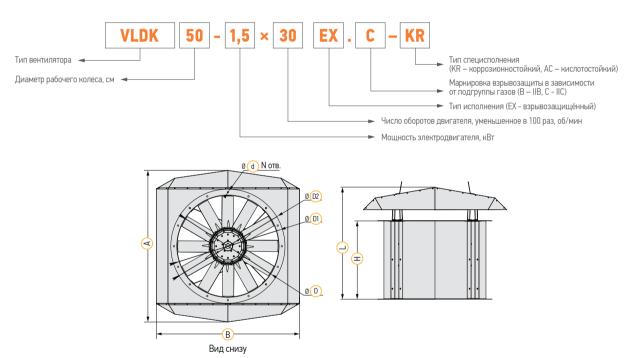

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 71-5,5×30	2850	380	5,5	70
2	VLDA 71-7,5×30	2900	380	7,5	96
3	VLDA 71-11×30	2910	380	11	123
4	VLDA 71-15×30	2920	380	15	166


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 80-4×15	1410	380	4	83
2	VLDA 80-5,5×15	1430	380	5,5	90
3	VLDA 80-7,5×15	1440	380	7,5	112
4	VLDA 80-11×15	1450	380	11	148
5	VLDA 80-11×30	2910	380	11	139
6	VLDA 80-15×30	2920	380	15	184
7	VLDA 80-18.5×30	2920	380	18,5	193
8	VLDA 80-22×30	2930	380	22	215


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 90-5,5×15	1430	380	5,5	110
2	VLDA 90-7,5×15	1440	380	7,5	146
3	VLDA 90-11×15	1450	380	11	158
4	VLDA 90-15×15	1460	380	15	203

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 100-4×15	1410	380	4	113
2	VLDA 100-7,5×15	1440	380	7,5	164
3	VLDA 100-11×15	1450	380	11	176
4	VLDA 100-15×15	1460	380	15	224

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 112-15×15	1460	380	15	234
2	VLDA 112-18,5×15	1460	380	18,5	254
3	VLDA 112-22×15	1460	380	22	272

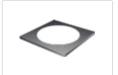

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDA 125-7,5×10	950	380	7,5	200
2	VLDA 125-11×10	970	380	11	255
3	VLDA 125-15×10	970	380	15	277
4	VLDA 125-22×15	1460	380	22	287
5	VLDA 125-30×15	1460	380	30	320
6	VLDA 125-37×15	1460	380	37	384
7	VLDA 125-45×15	1460	380	45	414

ОСЕВОЙ ВЕНТИЛЯТОР ПОДПОРА КРЫШНЫЙ VLDK

Применяются в системах подпора противодымной защиты систем вентиляции жилых, промышленных и общественных зданий.

- 11 типоразмеров с расходом воздуха от 2500 до 110 000 м³/ч.
- Статическое давление до 1 400 Па.
- Перемещение газовоздушной смеси с температурой от -40 до +60°C.
- Вентиляторы пригодны для работы как с короткой сетью воздуховодов, так и без нее.
- Облегченное рабочее колесо с полиамидными лопатками с заданным углом поворота установлено непосредственно на валу трехфазного асинхронного электродвигателя.
- Единая конструкция фланцев и корпуса с установленной внутри подмоторной плитой без использования сварки.
- Все корпусные и опорные элементы вентилятора из оцинкованной стали.
- Монтаж непосредственно на кровле здания или на специальном монтажном стакане.
- Защита от попадания влаги и осадков при помощи специально разработанной крыши.
- Климатическое исполнение У1 по ГОСТ 15150.
- Группа механического исполнения М3.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

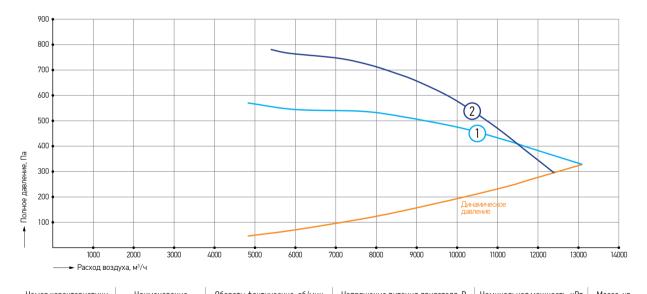

Стакан монтажный SMV

Адаптер SKV для крепления противопожарных клапанов

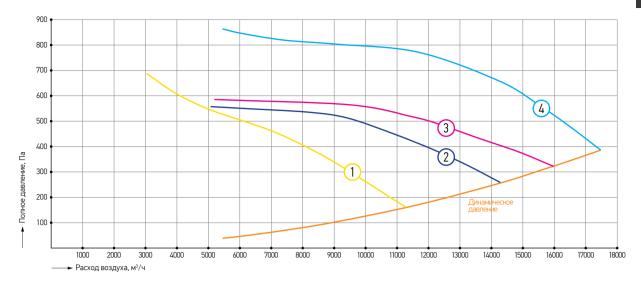
Поддон PV

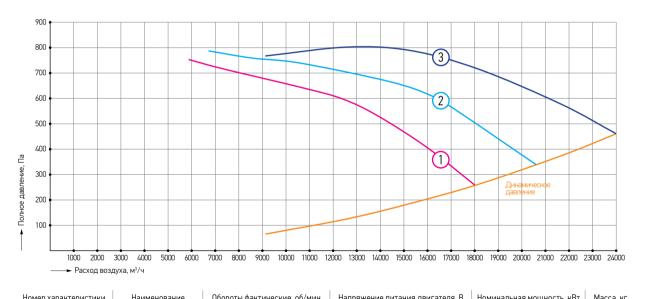
Комплект опорной плиты

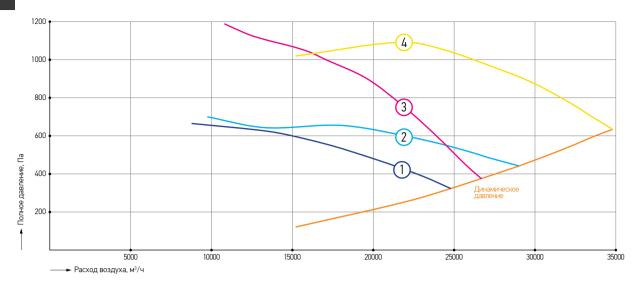
Противопожарный клапан KZO-2

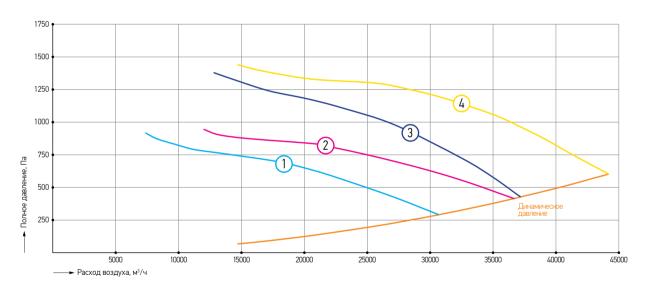

Щит управления вентиляторами ДУ и подпора UM-DU-V c ABP

РАЗМЕРЫ И МАССА

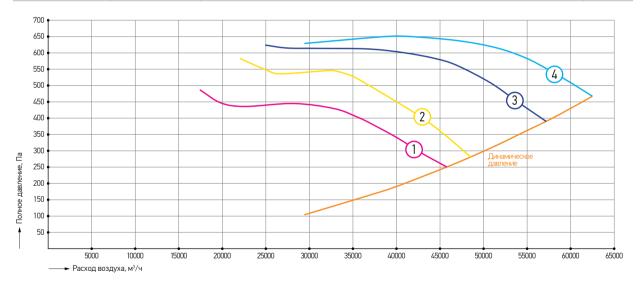

Типоразмер	Обозначение	D, мм	D1, мм	D2, мм	Н, мм	L, мм	А, мм	В, мм	d, мм	N, шт	Масса, кг						
	VLDK 40-1,1×30										29						
40	VLDK 40-1,5×30	400	450	480	450	641	716	720			31						
	VLDK 40-2,2×30								10	8	33						
,-	VLDK 45-2,2×30	/50	F00	F00			887	700			38						
45	VLDK 45-3×30	450	500	530		643	776	720			40						
	VLDK 50-1,5×30										39						
F0	VLDK 50-2,2×30						045	045			41						
50	VLDK 50-3×30	500	550	580		646	815	815			43						
	VLDK 50-4×30				500								12	48			
	VLDK 56-3×30								880				48				
56		560	610	640		717	880	907			53						
	VLDK 56-5,5×30										62						
	VLDK 63-4×30								-		57						
	VLDK 63-5,5×30					722					66						
63	VLDK 63-7,5×30	622	680	710			1060 1092	1092			94						
	VLDK 63-11×30				620	842										121	
	VLDK 71-5,5×30				500	727		1195 1129	12		72						
	VLDK 71-7,5×30						-				-		98				
71	VLDK 71-11×30	710	760	790	620	847	847 1195 11				125						
	VLDK 71-15×30				800	1027	-				168						
	VLDK 80-4×15				500	762					86						
	VLDK 80-5,5×15							-									115
	VLDK 80-7,5×15	_									93						
	VLDK 80-11×15				620	882		1222	1208		151						
80	VLDK 80-11×30	800	850	900			1305	1208		16	142						
	VLDK 80-15×30						-				187						
	VLDK 80-18.5×30	_			800	1062					196						
	VLDK 80-22×30				000	1002						218					
	VLDK 90-5,5×15											116					
	VLDK 90-7,5×15				620	876	876							152			
90	VLDK 90-11×15	900	950	1000 1420 1307			164										
	VLDK 90-15×15	_			800	1056	-				209						
	VLDK 100-4×15				500	825			-		119						
	VLDK 100-4×15	-			300	023	-				170						
100	VLDK 100-7,3×15	1000	1050	1100	620	945	1560	1433			182						
	VLDK 100-11×15 VLDK 100-15×15	+				1125	+				230						
						1123			-		230						
112	VLDK 112-15×15	1120	1170	1220	800	1132	1580	1590	14		261						
112	VLDK 112-18,5×15	1120	11/0	1220		1132	1300	1370									
	VLDK 112-22×15										279						
	VLDK 125-7,5×10	-									208						
	VLDK 125-11×10	-			900	11/0				24	263						
105	VLDK 125-15×10		1140	1700	1500			285									
125	VLDK 125-22×15	1250	1300	1350			1780 1590			295							
	VLDK 125-30×15	-												328			
	VLDK 125-37×15	-			940	1280					392						
	VLDK 125-45×15										422						

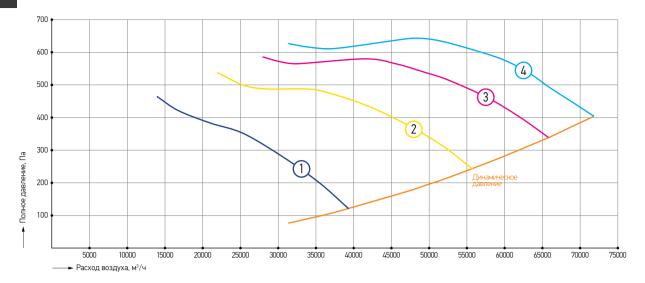

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 40-1,1×30	2800	380	1,1	29
2	VLDK 40-1,5×30	2880	380	1,5	31
3	VLDK 40-2,2×30	2860	380	2,2	33

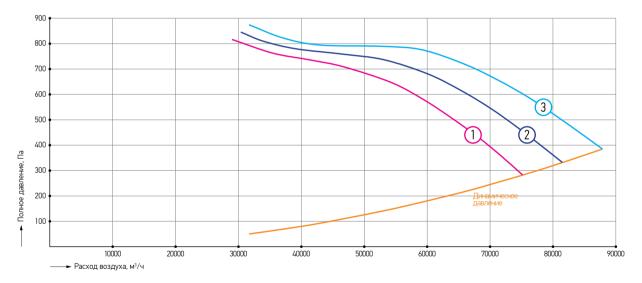

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 45-2,2×30	2860	380	2,2	38
2	VLDK 45-3×30	2860	380	3	40

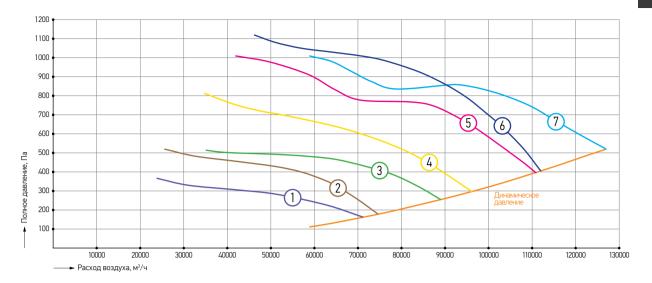

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 50-1,5×30	2880	380	1,5	39
2	VLDK 50-2,2×30	2860	380	2,2	41
3	VLDK 50-3×30	2860	380	3	43
4	VLDK 50-4×30	2850	380	4	48

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 56-3×30	2860	380	3	48
2	VLDK 56-4×30	2850	380	4	53
3	VLDK 56-5,5×30	2900	380	5,5	62


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 63-4×30	2850	380	4	57
2	VLDK 63-5,5×30	2850	380	5,5	66
3	VLDK 63-7,5×30	2900	380	7,5	94
4	VLDK 63-11×30	2910	380	11	121


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 71-5,5×30	2850	380	5,5	72
2	VLDK 71-7,5×30	2900	380	7,5	98
3	VLDK 71-11×30	2910	380	11	125
4	VLDK 71-15×30	2920	380	15	168


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 80-4×15	1410	380	4	86
2	VLDK 80-5,5×15	1430	380	5,5	93
3	VLDK 80-7,5×15	1440	380	7,5	115
4	VLDK 80-11×15	1450	380	11	151
5	VLDK 80-11×30	2910	380	11	142
6	VLDK 80-15×30	2920	380	15	187
7	VLDK 80-18.5×30	2920	380	18,5	196
8	VLDK 80-22×30	2930	380	22	218

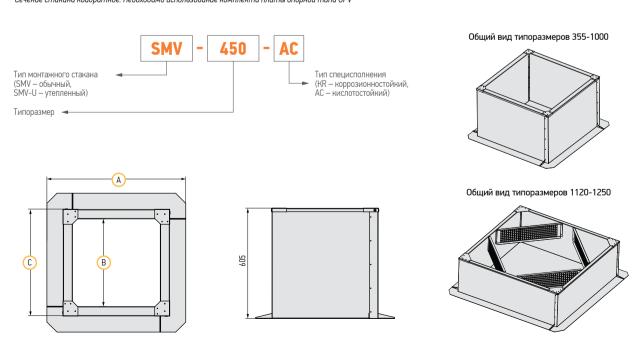

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 90-5,5×15	1430	380	5,5	116
2	VLDK 90-7,5×15	1440	380	7,5	152
3	VLDK 90-11×15	1450	380	11	164
4	VLDK 90-15×15	1460	380	15	209

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 100-4×15	1410	380	4	119
2	VLDK 100-7,5×15	1440	380	7,5	170
3	VLDK 100-11×15	1450	380	11	182
4	VLDK 100-15×15	1460	380	15	230

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 112-15×15	1460	380	15	241
2	VLDK 112-18,5×15	1460	380	18,5	261
3	VLDK 112-22×15	1460	380	22	279

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VLDK 125-7,5×10	950	380	7,5	208
2	VLDK 125-11×10	970	380	11	263
3	VLDK 125-15×10	970	380	15	285
4	VLDK 125-22×15	1460	380	22	295
5	VLDK 125-30×15	1460	380	30	328
6	VLDK 125-37×15	1460	380	37	392
7	VLDK 125-45×15	1460	380	45	422

СТАКАН МОНТАЖНЫЙ SMV. СТАКАН МОНТАЖНЫЙ УТЕПЛЕННЫЙ SMV-U

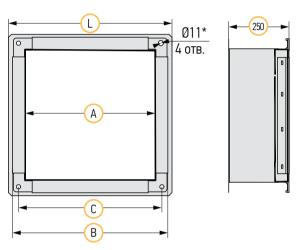


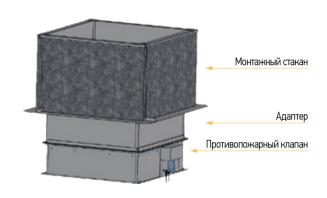
Предназначены для монтажа крышных вентиляторов дымоудаления на кровле зданий, а также крышных осевых вентиляторов подпора.

- Изготавливаются в 12 типоразмерах;
- В типоразмерах 1120-1250 установлены стенки-распорки для более высокой устойчивости конструкции;
- Стакан монтажный утепленный SMV-U применяется для предотвращения образования конденсата на внутренних стенках стакана из-за перепада температур наружного воздуха и температуры воздуха в помещении;
- Вариант специсполнения коррозионностойкий и кислотостойкий:
- Возможно изготовление нестандартных исполнений для установки на наклонные поверхности.

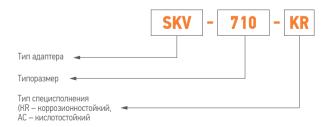
				Масса ст	акана, кг	Наименование крышного	Наименование осевого	
Тип стакана	А, мм	В, мм	С, мм	неутепленное исполнение	утепленное исполнение	вентилятора дымоудаления	вентилятора подпора*	
SMV-355, SMV-U-355	761	481	586	14	28	VSDB/VSDV DU-35A/B	VLDK 400	
SMV-400, SMV-U-400	802	522	627	15	30	VSDB/VSDV DU-40A/B	VLDK 450	
SMV-450, SMV-U-450	833	552	657	24	39	VSDB/VSDV DU-45A/B	VLDK 500	
SMV-500, SMV-U-500	962	681	786	28	47	VSDB/VSDV DU-50A/B	VLDK 560	
SMV-560, SMV-U-560	1112	831	936	34	57	VSDB/VSDV DU-56A/B	VLDK 630/710	
SMV-630, SMV-U-630	1195	913	1024	50	74	VSDB/VSDV DU-63A/B	VLDK 800	
SMV-710, SMV-U-710	1256	969	1075	52	78	VSDB/VSDV DU-71A/B	VLDK 900	
SMV-800, SMV-U-800	1411	1129	1240	61	91	VSDB/VSDV DU-80A/B	VLDK 1000	
SMV-900, SMV-U-900	1573	1291	1402	69	103	VSDB/VSDV DU-90A/B	VLDK 1120	
SMV-1000, SMV-U-1000	1751	1469	1580	78	116	VSDB/VSDV DU-100A/B	VLDK 1250	
SMV-1120, SMV-U-1120	2055	1671	1790	163	207	VSDB/VSDV DU-112A/B	_	
SMV-1250, SMV-U-1250	2251	1867	1986	179	227	VSDB/VSDV DU-125A/B	_	

^{*} Сечение стакана квадратное. Необходимо использование комплекта плиты опорной типа OPV



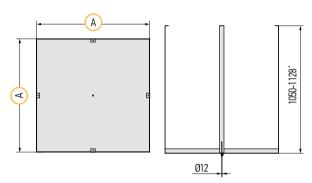

АДАПТЕР SKV ДЛЯ КРЕПЛЕНИЯ ПРОТИВОПОЖАРНЫХ КЛАПАНОВ

Предназначен для крепления противопожарных нормальнозакрытых клапанов типа KZO-2-...-..-Х к монтажному стакану SMV и SMV-U.


- Изготавливается в 12 типоразмерах;
- Вариант специсполнения коррозионностойкий и кислотостойкий;
- Крепится под монтажный стакан.

Тип адаптера	А, мм	В, мм	С, мм	L , мм	Масса , кг	Тип монтажного стакана
SKV-355	450	510	480	526	6	SMV-355, SMV-U-355
SKV-400	500	560	530	576	6,5	SMV-400, SMV-U-400
SKV-450	550	610	580	626	7,2	SMV-450, SMV-U-450
SKV-500	650	710	680,0	726	8,3	SMV-500, SMV-U-500
SKV-560	800	860	830	876	10,1	SMV-560, SMV-U-560
SKV-630	900	960	930	976	12	SMV-630, SMV-U-630
SKV-710	950	1010	980	1026	12	SMV-710, SMV-U-710
SKV-800	1100	1160	1130	1176	19	SMV-800, SMV-U-800
SKV-900	1250	1310	1280	1326	22	SMV-900, SMV-U-900
SKV-1000	1450	1510	1480	1526	25	SMV-1000, SMV-U-1000
SKV-1120	1650	1710	1680	1726	28	SMV-1120, SMV-U-1120
SKV-1250	1850	1910	1880	1926	31	SMV-1250, SMV-U-1250

Тип монтажного стакана	Тип адаптера	Наименование противопожарного клапана
SMV-355, SMV-U-355	SKV-355	KZO-2450×450SX
SMV-400, SMV-U-400	SKV-400	KZ0-2500×500SX
SMV-450, SMV-U-450	SKV-450	KZ0-2550×550SX
SMV-500, SMV-U-500	SKV-500	KZ0-2650×650SX
SMV-560, SMV-U-560	SKV-560	KZO-2800×800SX
SMV-630, SMV-U-630	SKV-630	KZO-2900×900SX
SMV-710, SMV-U-710	SKV-710	KZ0-2950×950SX
SMV-800, SMV-U-800	SKV-800	KZO-21100×1100SX (кассет.)
SMV-900, SMV-U-900	SKV-900	KZO-21250×1250SX (кассет.)
SMV-1000, SMV-U-1000	SKV-1000	KZO-21450×1450SX (кассет.)
SMV-1120, SMV-U-1120	SKV-1120	KZO-21650×1650SX (кассет.)
SMV-1250, SMV-U-1250	SKV-1250	KZO-21850×1850SX (кассет.)



поддон РУ

Предназначен для сбора и удаления конденсата, который образуется за счет конденсации влаги на металлических элементах вентилятора и монтажном стакане.

- Изготавливается в 8 типоразмерах;
- Вариант специсполнения коррозионностойкий и кислотостойкий;
- При монтаже размер может регулироваться посредством крепления поддона к отверстиям на подвесе, расположенным на разной высоте.

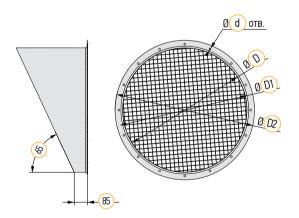
*при монтаже размер может изменяться от 1050 до 1128 мм.

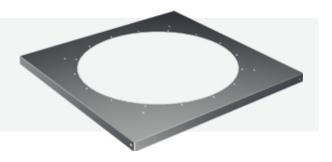
			PV	-	2	KR
Тип поддона	-					
Типоразмер	-					
Тип исполнения (KR – коррозион AC – кислотосто		-				

Тип поддона	А, мм	Масса, кг	Наименование крышного вентилятор дымоудаления	Наименование осевого вентилятора подпора
			VSDB/VSDV DU-35A/B	VLDK 40
PV-1	750	6,8	VSDB/VSDV DU-40A/B	VLDK 45
			VSDB/VSDV DU-45A/B	VLDK 50
DV 2	1000	10.0	VSDB/VSDV DU-50A/B	VLDK 56
PV-2	1000	10,8	VSDB/VSDV DU-56A/B	VLDK 63/71
DV 2	1150	1/	VSDB/VSDV DU-63A/B	VLDK 80
PV-3	1150	14	VSDB/VSDV DU-71A/B	VLDK 90
PV-4	1350	20	VSDB/VSDV DU-80A/B	VLDK 100
PV-5	1500	23	VSDB/VSDV DU-90A/B	VLDK 112
PV-6	1700	29	VSDB/VSDV DU-100A/B	VLDK 125
PV-7	1900	35	VSDB/VSDV DU-112A/B	_
PV-8	2100	42	VSDB/VSDV DU-125A/B	_

Слив может быть установлен при монтаже в любом месте донной части поддона. Данная операция осуществляется путем сверления отверстия в необходимом месте и установки сливного комплекта на саморезы (поставляются совместно с поддоном).

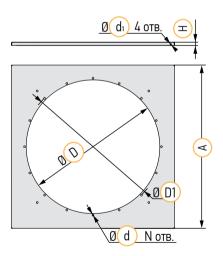
При монтаже размер может регулироваться посредством крепления поддона к отверстиям на подвесе, расположенным на разной высоте. Данная конструктивная особенность позволяет подвешивать поддон не только в горизонтальном, но и в наклонном положении.


ЗАЩИТНЫЙ КОЗЫРЕК ZKV


Предназначен для защиты осевых вентиляторов подпора от механических воздействий и атмосферных осадков.

• Изготавливается в 11 типоразмерах.

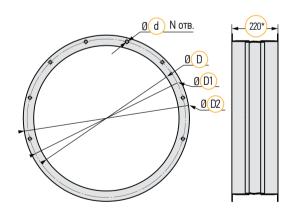
Тип козырька с сеткой	D, мм	D1, мм	D2, мм	d, мм	Масса, кг	Наименование осевого вентилятора подпора
ZKV-400	400	450	480	10	3,2	VLDA 40
ZKV-450	450	500	530	10	3,8	VLDA 45
ZKV-500	500	550	580	12	4,4	VLDA 50
ZKV-560	560	610	640	12	5,2	VLDA 56
ZKV-630	622	680	710	12	6,2	VLDA 63
ZKV-710	710	760	790	12	7,5	VLDA 71
ZKV-800	800	850	900	12	13	VLDA 80
ZKV-900	900	950	1000	14	16	VLDA 90
ZKV-1000	1000	1050	1100	14	18	VLDA 100
ZKV-1120	1120	1170	1220	14	22	VLDA 112
ZKV-1250	1250	1300	1350	14	26	VLDA 125


комплект плиты опорной ору

Предназначен для установки осевого крышного вентилятора на монтажный стакан SMV и SMV-H.

- Изготавливается в 11 типоразмерах;
- С 630 типоразмера поставляется комплектно с опорами для монтажа крышного осевого вентилятора подпора.

Тип опорной плиты	А, мм	D, мм	D1, мм	Н, мм	d, мм	d1, мм	N, шт	Масса, кг	Наименование осевого вентилятора подпора
0PV-400	596	425	450	22	10,6	9,1	8	4,2	VLDK 40
0PV-450	637	475	500	22	10,6	9,1	8	4,5	VLDK 45
0PV-500	665	525	550	27	12,5	9,1	12	4,7	VLDK 50
0PV-560	794	585	610	27	12,5	9,1	12	7	VLDK 56
0PV-630	942	635	680	27	12,5	9,1	20	8,9	VLDK 63
0PV-710	942	735	760	27	12,5	9,1	20	10,2	VLDK 71
0PV-800	1036	825	850	27	12,5	11,1	20	15,2	VLDK 80
OPV-900	1087	925	950	27	14	11,1	20	14,7	VLDK 90
OPV-1000	1252	1025	1050	27	14	11,1	20	20,6	VLDK 100
0PV-1120	1414	1145	1170	32	14	11,1	28	27,1	VLDK 112
OPV-1250	1592	1275	1300	32	14	11,1	28	34,5	VLDK 125

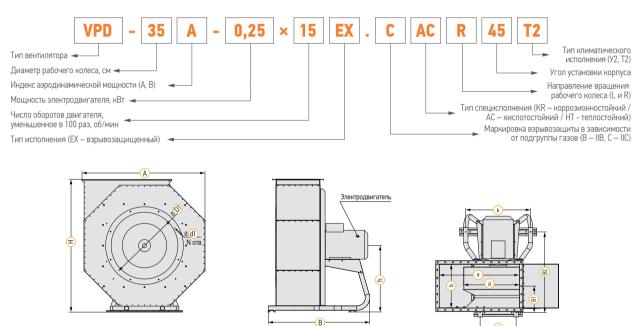

ВСТАВКА ГИБКАЯ КРУГЛАЯ GHVK

Предназначена для снижения механических вибраций, передаваемых от осевого вентилятора подпора к системе воздуховодов.

 Изготавливается в 11 типоразмерах в общепромышленном исполнении.

Тип вставки	D, мм	D1, мм	D2, мм	N, шт	Масса, кг	Наименование осевого вентилятора подпора
GHVK-400	400	450	480	8	3,8	VLDA 40
GHVK-450	450	500	530	8	4,3	VLDA 45
GHVK-500	500	550	580	12	4,7	VLDA 50
GHVK-560	560	610	640	12	5,3	VLDA 56
GHVK-630	622	680	710	16	6,1	VLDA 63
GHVK-710	710	760	790	16	6,6	VLDA 71
GHVK-800	800	850	900	16	10,3	VLDA 80
GHVK-900	900	950	1000	16	12	VLDA 90
GHVK-1000	1000	1050	1100	16	13	VLDA 100
GHVK-1120	1120	1170	1220	24	15	VLDA 112
GHVK-1250	1250	1300	1350	24	16	VLDA 125

* Размер указан в растянутом состоянии


ВЕНТИЛЯТОР РАДИАЛЬНЫЙ VPD

Общеобменные радиальные вентиляторы одностороннего всасывания предназначены для перемещения газовых сред в системах приточно-вытяжной вентиляции.

- 12 типоразмеров с расходом воздуха от 600 до 90 000 м³/ч.
- Статическое давление до 2100 Па.
- Уникальный трубный силовой каркас корпуса, обеспечивающий высокую прочность и жесткость вентилятора.
- Высокая надежность конструкции: соединение всех элементов без использования электродуговой сварки – отсутствие изломов сварных швов в результате вибраций, температурных перепадов и т. д.
- Возможность присоединения на входе как круглого, так и квадратного воздуховода.

- Состав вентилятора:
 - свободное рабочее колесо с загнутыми назад лопатками,
 - тороидальный входной патрубок (коллектор),
 - восьмигранный корпус,
 - электродвигатель.
- Климатическое исполнение У2 и Т2 по ГОСТ 15150. Для размещения по категории У1, УХЛ1 и Т1 требуется применение:
 - Кожуха двигателя DTK (опция)
 - Клапана защитного PRT (опция) при необходимости.
- Вариант исполнения взрывозащищенный.
- Вариант специсполнения коррозионностойкий, кислотостойкий и теплостойкий.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Вставка гибкая квадратная GVTQ

Комплект виброопор DO

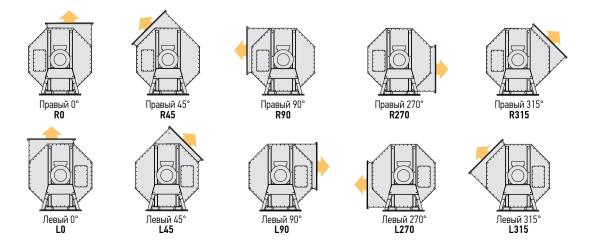
Вставка гибкая прямоугольная GVTR

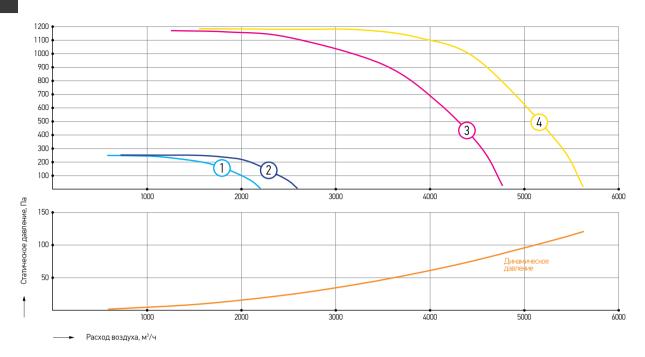
Щит управления вентилятором UM-V

Вставка гибкая круглая

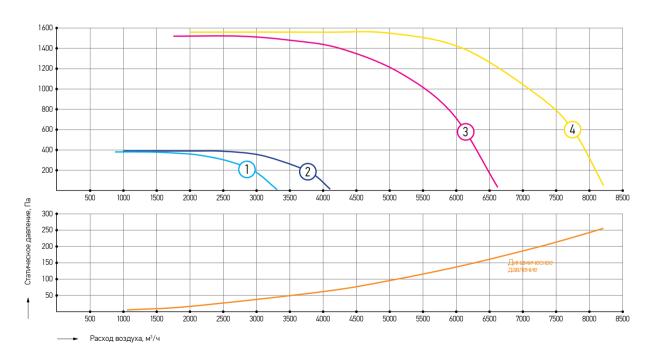
Щит управления вентилятором UM-V-R

Клапан защитный

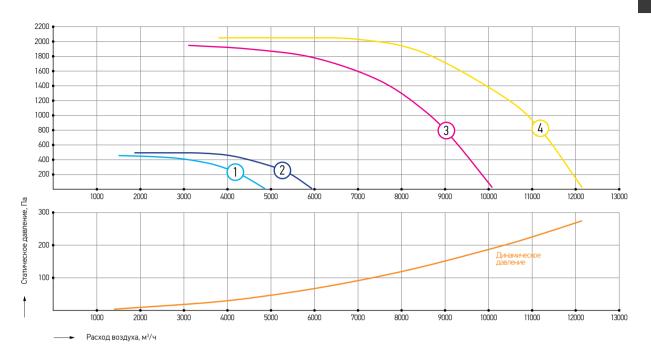

Регулятор оборотов частотный GS51

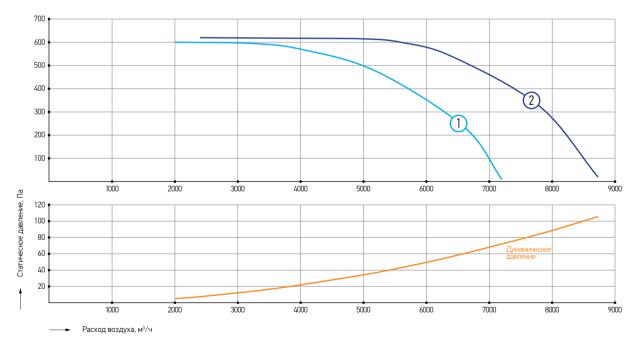


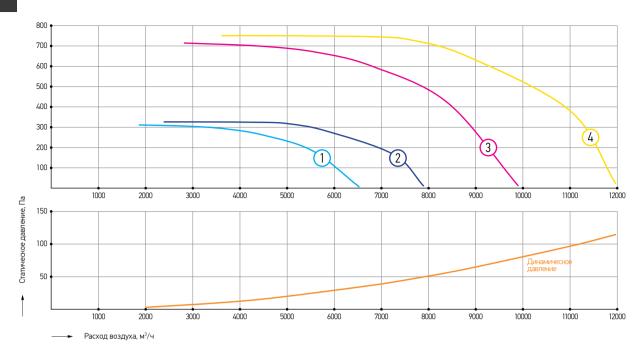
Кожух двигателя

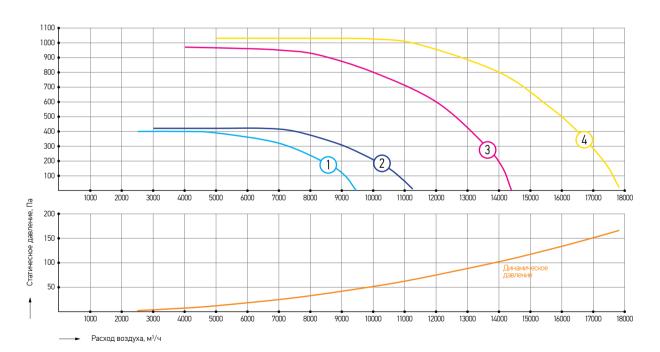

РАЗМЕРЫ И МАССА

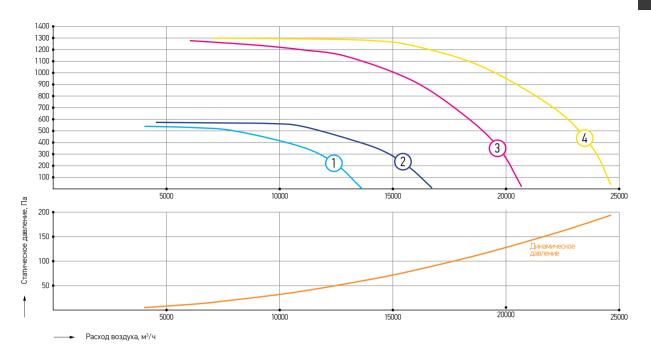
Типоразмер	Обозначение	d, mm	А,	В,	В1,	В2,	Н,	h, мм	а,	b, мм	k, mm	k1, мм	D1, мм	d1, мм	N, шт	Мощность, кВт	Масса, кг
	VPD-35A-0,25×15															0,25	42
25	VPD-35B-0,37×15	٥٢٢	710	/72	1/5	F10	000	/07	200	2//	376	174	/20		_	0,37	43
35	VPD-35A-2,2×30	355	710	673	165	519	822	407	300	00 244	4 3/6	1/4	430	M6	8	2,2	51
	VPD-35B-3×30															3	55
	VPD-40A-0,55×15															0,55	45
	VPD-40B-0,55×15			/50		-40		,,,,,			0.77	45,				0,55	46
40	VPD-40A-3×30	400	710	673	165	519	822	22 407	300	244	376	174	430	M6	8	3	54
	VPD-40B-4×30															4	61
	VPD-45A-0,75×15															0,75	55
	VPD-45B-1,1×15	,,,,						,			,,,					1,1	61
45	VPD-45A-7,5×30	450	820	761	180	570	922	457	350	302	434	200	490	M6	8	7,5	87
	VPD-45B-7,5×30															7,5	90
	VPD-50A-1,1×15	500			450		4000			200		0/0			_	1,1	76
50	VPD-50B-1,5×15	500	920	811	179	582	1022	507	385	307	474	242	490	M6	8	1,5	80
	VPD-56A-0,75×10															0,75	90
	VPD-56B-1,1×10	1													_	1,1	95
56	VPD-56A-2,2×15	560	1020	901	208	683	1135	570	450	362	550	262	660	M8	8	2,2	97
	VPD-56B-2,2×15															2,2	99
	VPD-63A-1,1×10															1,1	121
	VPD-63B-1,5×10	1	1100								405 626	3 296	660			1,5	125
63	VPD-63A-4×15	630	1120	1014	240	771	1235	235 620	620 510	510 405				M8	8	4	135
	VPD-63B-5,5×15															5,5	144
	VPD-71A-2,2×10											220 4				2,2	155
	VPD-71B-3×10															3	168
71	VPD-71A-7,5×15	710	1220	1087	275	845	1341	676	575	472	670	330	660	M8	8	7,5	181
	VPD-71B-11×15															11	195
	VPD-80B-2,2×7,5															2,2	220
	VPD-80A-4×10							1542 776		670 505	505 760	760 420				4	229
80	VPD-80B-5,5×10	800	1424	1175	305	932	1542		670				850	M8	8	5,5	242
	VPD-80A-15×15	1		11/3					770 070				030			15	285
	VPD-80B-18,5×15															18,5	303
	VPD-90A-3×7,5															3	282
	VPD-90B-4×7,5															4	302
90	VPD-90A-7,5×10	900	1624	1435	354	1068	1768	901	760	528	870	420	850	M8	8	7,5	324
	VPD-90B-11×10															11	357
	VPD-100A-5,5×7,5															5,5	375
	VPD-100B-7,5×7,5															7,5	390
100	VPD-100A-15×10	1000	1824	1461	332	1093	1968	1001	850	567	940	504	1040	M10	8	15	420
	VPD-100B-18,5×10	-														18,5	445
	VPD-112A-11×7,5															11	570
	VPD-112B-15×7,5															15	610
112	VPD-112A-22×10	1120	2059	1795	445	1397	2207	1122	1000	720	1040	590	1040	M10	8	22	620
	VPD-112B-30×10	-														30	670
	VPD-125A-15×7,5															15	659
	VPD-125B-22×7,5	+														22	725
125	VPD-125A-37×10	1250	2224	1878	475	1480	2371	1205	1100 779	779	1100	1100 650	1310	M10	12	37	813
	VPD-125B-55×10	+								,,,	30 000				55	990	
	41 D 123D-33×10															- 55	770

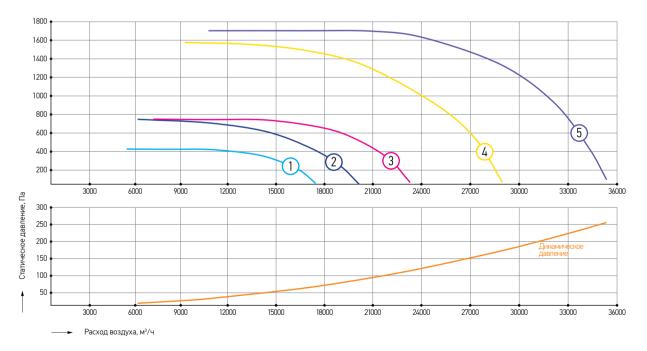


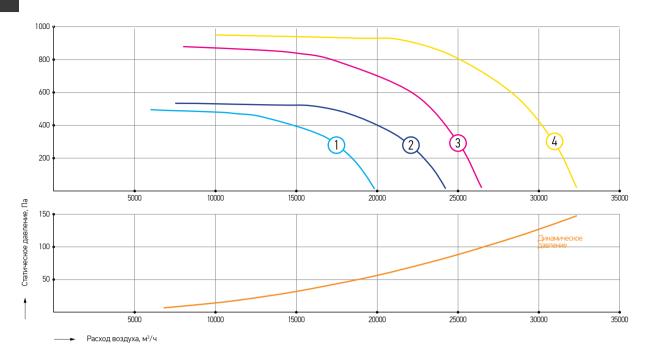

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-35A-0,25×15	1320	380	0,25	42
2	VPD-35B-0,37×15	1320	380	0,37	43
3	VPD-35A-2,2×30	2860	380	2,2	51
4	VPD-35B-3×30	2860	380	3	55

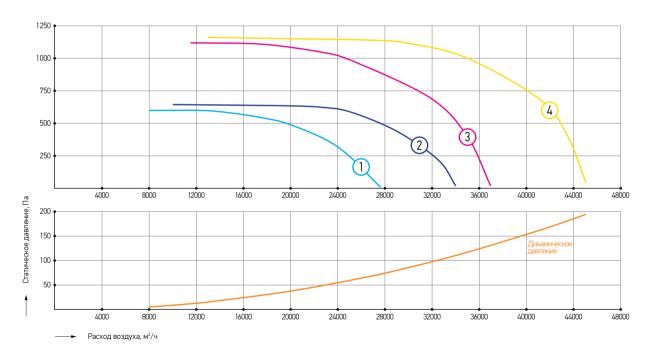

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-40A-0,55×15	1400	380	0,55	45
2	VPD-40B-0,55×15	1400	380	0,55	46
3	VPD-40A-3×30	2860	380	3	54
4	VPD-40B-4×30	2860	380	4	61

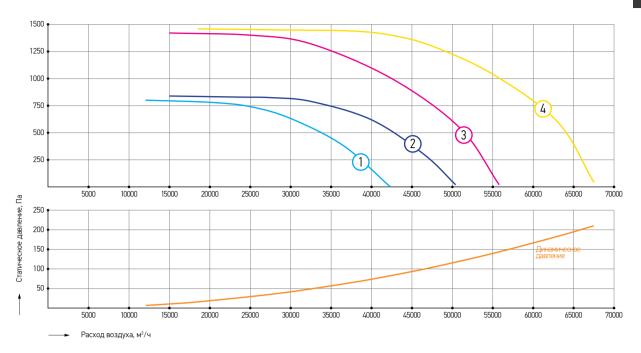

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-45A-0,75×15	1400	380	0,75	55
2	VPD-45B-1,1×15	1420	380	1,1	61
3	VPD-45A-7,5×30	2900	380	7,5	87
4	VPD-45B-7,5×30	2900	380	7,5	90

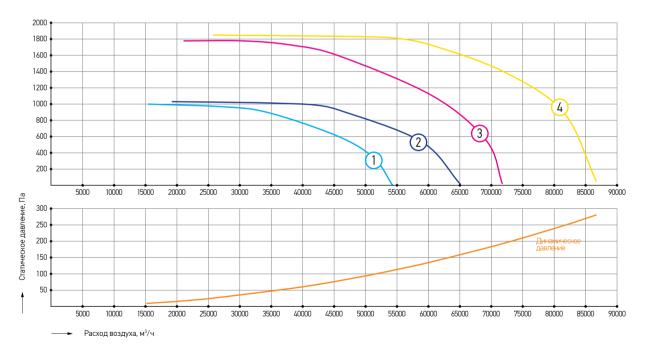

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-50A-1,1×15	1420	380	1,1	76
2	VPD-50B-1,5×15	1400	380	1,5	80


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг	
1	VPD-56A-0,75×10	930	380	0,75	90	
2	VPD-56B-1,1×10	930	380	1,1	95	
3	VPD-56A-2,2×15	1410	380	2,2	97	
4	VPD-56B-2,2×15	1410	380	2,2	99	

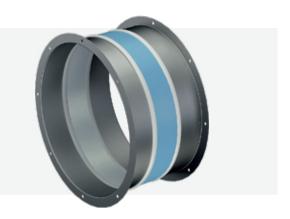

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-63A-1,1×10	930	380	1,1	121
2	VPD-63B-1,5×10	930	380	1,5	125
3	VPD-63A-4×15	1410	380	4	135
4	VPD-63B-5,5×15	1430	380	5,5	144


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-71A-2,2×10	930	380	2,2	155
2	VPD-71B-3×10	930	380	3	168
3	VPD-71A-7,5×15	1440	380	7,5	181
4	VPD-71B-11×15	1450	380	11	195

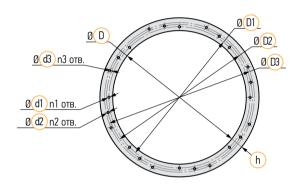

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-80B-2,2×7,5	710	380	2,2	220
2	VPD-80A-4×10	950	380	4	229
3	VPD-80B-5,5×10	950	380	5,5	242
4	VPD-80A-15×15	1460	380	15	285
5	VPD-80B-18,5×15	1460	380	18,5	303

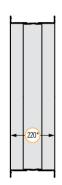

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-90A-3×7,5	700	380	3	282
2	VPD-90B-4×7,5	720	380	4	302
3	VPD-90A-7,5×10	950	380	7,5	324
4	VPD-90B-11×10	970	380	11	357

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-100A-5,5×7,5	720	380	5,5	375
2	VPD-100B-7,5×7,5	720	380	7,5	390
3	VPD-100A-15×10	970	380	15	420
4	VPD-100B-18,5×10	980	380	18,5	445

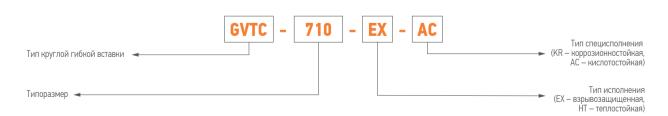


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг	
1	VPD-112A-11×7,5	730	380	11	570	
2	VPD-112B-15×7,5	730	380	15	610	
3	VPD-112A-22×10	975	380	22	620	
4	VPD-112B-30×10	975	380	30	670	


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VPD-125A-15×7,5	730	380	15	659
2	VPD-125B-22×7,5	735	380	22	725
3	VPD-125A-37×10	980	380	37	813
4	VPD-125B-55×10	980	380	55	990

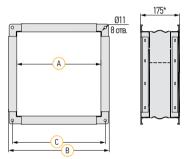

ВСТАВКА ГИБКАЯ КРУГЛАЯ GVTC

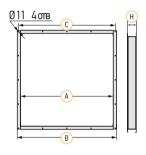
Предназначена для снижения механических вибраций, передаваемых от радиального вентилятора к системе воздуховодов.


- Изготавливается в 11 типоразмерах;
- Устанавливается на всасывающей стороне вентилятора;
- Вариант исполнения: теплостойкая на 200 градусов и взрывозащищенная;
- Вариант специсполнения: коррозионностойкая и кислотостойкая.

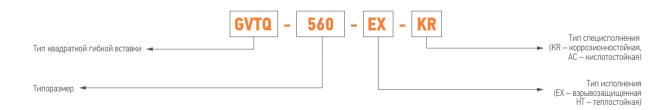
* Размер указан в растянутом состоянии

Тип вставки	D, мм	D1, мм	D2, мм	D3, мм	h, мм	d1, мм	d2, мм	d3, мм	n1, шт	п2, шт	п3, шт	Масса, кг	Наименование радиального вентилятора
GVTC-355	355	401	430	-	50	7	7	-	8	8	-	1,9	VPD 35
GVTC-400	400	433	451	-	40	10	10	-	8	8	-	3,8	VPD 40
GVTC-450/500	450	490	508	526	50	10	10	10	8	12	8	4,3	VPD 45/50
GVTC-560	560	643,5	660	-	63	10	10	-	8	8	-	5,6	VPD 56
GVTC-630	622	660	-	-	44	10	-	-	8	-	-	6,1	VPD 63
GVTC-710	710	750	-	-	40	10	-	-	8	-	-	6,6	VPD 71
GVTC-800	800	850	-	-	50	12	-	-	8	-	-	10,3	VPD 80
GVTC-900	900	956	-	-	50	12	-	-	8	-	-	12	VPD 90
GVTC-1000	1000	1040	1050	-	50	12	12	-	8	8	-	13	VPD 100
GVTC-1120	1120	1180	-	-	50	12	-	-	8	-	-	15	VPD 112
GVTC-1250	1250	1310	-	-	50	12	-	_	12	-	-	16	VPD 125


ВСТАВКА ГИБКАЯ КВАДРАТНАЯ GVTQ


Предназначена для снижения механических вибраций, передаваемых от радиального вентилятора к системе воздуховодов.

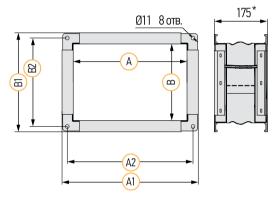
- Изготавливается в 10 типоразмерах;
- Устанавливается на всасывающей стороне вентилятора;
- Для крепления квадратной гибкой вставки нужен адаптер (идет в комплекте);
- Вариант исполнения: теплостойкая на 200 градусов и взрывозащищенная;
- Вариант специсполнения: коррозионностойкая и кислотостойкая.

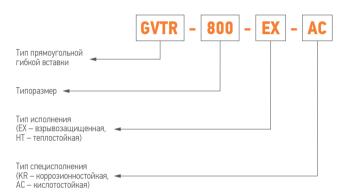


Адаптер для квадратной гибкой вставки

* Размер указан в растянутом состоянии

Тип вставки		Pa	змеры вста	вки		Размеры адаптера					Наименование радиального
	А, мм	В, мм	С, мм	L1, мм	Масса, кг	А, мм	В, мм	С, мм	Н, мм	Масса, кг	вентилятора
GVTQ-355/400	500	560	530	470	6,2	478	558	530	85	4	VPD 35/40
GVTQ-450/500	550	610	580	520	6,9	548	618	580	85	4,4	VPD 45/50
GVTQ-560	650	710	680	620	10,3	626	706	680	94	5,6	VPD 56
GVTQ-630	750	810	780	720	11,9	738	818	780	85	6	VPD 63
GVTQ-710	800	860	830	770	12,6	788	868	830	85	6,4	VPD 71
GVTQ-800	950	1010	980	920	15	918	1008	980	85	7,8	VPD 80
GVTQ-900	1000	1060	1030	970	15,8	988	1078	1050	85	8,3	VPD 90
GVTQ-1000	1100	1160	1130	1070	17,5	1100	1180	1130	105	10,3	VPD 100
GVTQ-1120	1250	1310	1280	1220	20,1	1250	1330	1280	105	11,7	VPD 112
GVTQ-1250	1400	1460	1430	1370	21,5	1400	1490	1430	105	13,2	VPD 125

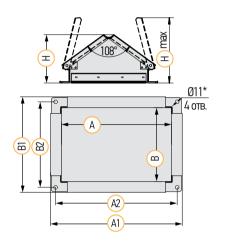


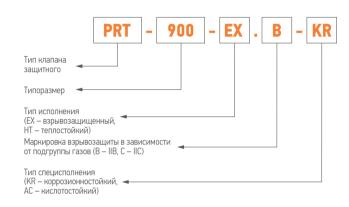

ВСТАВКА ГИБКАЯ ПРЯМОУГОЛЬНАЯ GVTR

Предназначена для снижения механических вибраций, передаваемых от радиального вентилятора к системе воздуховодов.

- Изготавливается в 12 типоразмерах;
- Устанавливается на стороне нагнетания вентилятора;
- Вариант исполнения: теплостойкая на 200 градусов и взрывозащищенная;
- Вариант специсполнения: коррозионностойкая и кислотостойкая.

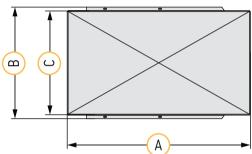
* Размер указан в растянутом состоянии

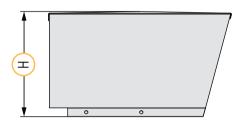

Тип вставки	А, мм	А1, мм	В, мм	В1, мм	А2, мм	В2, мм	Масса, кг	Наименование радиального вентилятора
GVTR-355	455	515	240	300	485	270	3,3	VPD 35
GVTR-400	455	515	255	315	485	285	3,5	VPD 40
GVTR-450	535	595	315	375	565	345	4,4	VPD 45
GVTR-500	605	665	320	380	635	350	4,7	VPD 50
GVTR-560	675	735	375	435	705	405	5,4	VPD 56
GVTR-630	745	805	415	475	775	445	6,1	VPD 63
GVTR-710	815	875	460	520	845	490	6,7	VPD 71
GVTR-800	955	1015	520	580	985	550	9,6	VPD 80
GVTR-900	1100	1160	545	605	1130	575	10,5	VPD 90
GVTR-1000	1240	1300	580	640	1270	610	12	VPD 100
GVTR-1120	1405	1465	735	795	1435	765	14	VPD 112
GVTR-1250	1520	1580	795	855	1550	825	16	VPD 125


КЛАПАН ЗАЩИТНЫЙ PRT

Предназначен для защиты радиальных вентиляторов от осадков, установленных под открытым небом, с углом поворота корпуса 0°, 45° и 315°.

- Изготавливается в 12 типоразмерах;
- Устанавливается на выходной патрубок вентилятора;
- Вариант исполнения: взрывозащищенный, теплостойкий;
- Вариант специсполнения: коррозионностойкий и кислотостойкий.


Тип защитного клапана	А, мм	А1, мм	А2, мм	В, мм	В1, мм	В2,мм	Н, мм	Нтах, мм	Масса, кг	Наименование радиального вентилятора
PRT-355	455	515	485	240	300	270	150	203	3,4	VPD 35
PRT-400	455	515	485	255	315	285	155	210	3,5	VPD 40
PRT-450	535	595	565	315	375	345	178	248	3,9	VPD 45
PRT-500	605	665	635	320	380	350	180	253	4,2	VPD 50
PRT-560	675	735	705	375	435	405	200	285	5,2	VPD 56
PRT-630	745	805	775	415	475	445	213	308	5,8	VPD 63
PRT-710	815	875	845	460	520	490	229	335	6,5	VPD 71
PRT-800	955	1015	985	520	580	550	252	373	8,1	VPD 80
PRT-900	1100	1160	1130	545	605	575	260	386	8,8	VPD 90
PRT-1000	1240	1300	1270	580	640	610	274	412	10,5	VPD 100
PRT-1120	1405	1465	1435	735	795	765	327	506	13,7	VPD 112
PRT-1250	1520	1580	1550	795	855	825	348	545	15,4	VPD 125

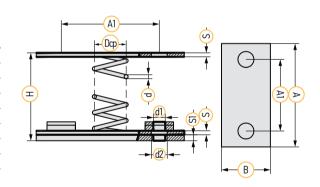

КОЖУХ ДВИГАТЕЛЯ DTK

Предназначен для защиты электродвигателя радиального вентилятора от атмосферных осадков

- Изготавливаются в 11 типоразмерах;
- Вариант специсполнения:
 коррозионностойкий и кислотостойкий.

Тип кожуха	А, мм	В, мм	С, мм	Н, мм	Масса, кг	Наименование радиального вентилятора
DTK-355/400	461	304	291	366	3,1	VPD 35/40
DTK-450	591	337	324	398	4,4	VPD 45
DTK-500	446	254	236	343	2,9	VPD 50
DTK-560	516	314	296	368	3,9	VPD 56
DTK-630	606	354	336	387	4,8	VPD 63
DTK-710	686	376	381	476	6,8	VPD 71
DTK-800	736	444	449	556	8,5	VPD 80
DTK-900	836	490	495	604	11	VPD 90
DTK-1000	866	582	588	635	19	VPD 100
DTK-1120	961	674	680	723	24	VPD 112
DTK-1250	1066	735	740	780	28	VPD 125

КОМПЛЕКТ ВИБРООПОР DO

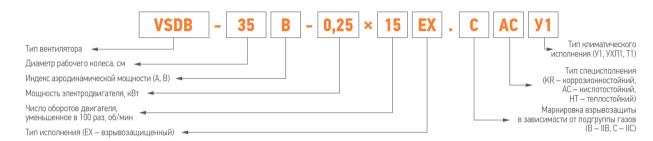


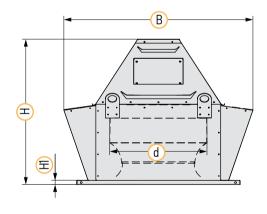
Предназначен для снижения динамической нагрузки, передаваемой от вентилятора на несущую конструкцию

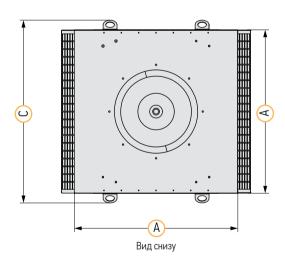
- Виброизолятор ДО состоит из цилиндрической пружины, к торцам которой жестко прикреплены штампованные стальные пластины;
- Изготавливается в 7 типоразмерах;
- Виброизоляторы ДО предназначены для монтажа вентилятора в помещении.

Тип виброи-	Α,	A1.	В,	Н.	S.	S1.	Дср.	d,	м мм мм жесткость, кг/см² [Нагрузка		Осадка под нагрузкой, мм				
золятора	ММ	ММ	мм	ММ	MM	ММ	мм	MM		,	Рабочая	Предельная	Рабочая	Предельная	Масса, кг	
Д0-39	110	80	70	97,5	2	5	40	4	8,4	12	61	22,3	27,8	36	45	0,41
Д0-40	130	100	90	123	3	10	50	5	8,4	12	81	34,6	43,2	41,7	52	0,94
Д0-41	130	100	90	138	3	10	54	6	10,5	14	124	55	68,7	43,4	54	1,03
Д0-42	150	120	110	180	3	10	72	8	10,5	14	165	96	120	57,2	72	1,79
Д0-43	160	130	120	202	3	10	80	10	10,5	14	294	168	210	56	70	2,46
Д0-44	180	150	140	236	3	10	96	12	10,5	14	357	243	303	66,5	83	3,74
Д0-45	220	180	170	291	3	10	120	15	13	16	442	380	475	84,5	106	6,58

Комплект виброопор	Тип виброизолятора	Кол-во вибро- изоляторов в комплекте	Наименование радиального вентилятора
DO-355/400	Д0-39	4	VPD 35/40
D0-450/500	Д0-40	4	VPD 45/50
D0-560/630	Д0-41	4	VPD 56/63
DO-710	Д0-42	4	VPD 71
DO-800	Д0-43	4	VPD 80
DO-900/1000	Д0-43	5	VPD 90/100
DO-1120	Д0-44	5	VPD 112
DO-1250	Д0-45	5	VPD 125




ВЕНТИЛЯТОР КРЫШНЫЙ С ВЫБРОСОМ В СТОРОНУ VSDB



Общепромышленные крышные вентиляторы предназначены для перемещения газовых сред в системах вытяжной вентиляции.

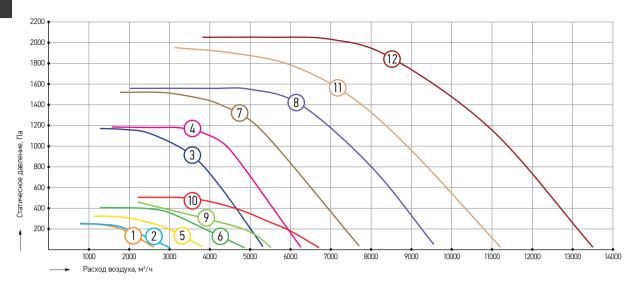
- 12 типоразмеров с расходом воздуха от 700 до 95 000 м³/ч;
- Статическое давление до 2100 Па;
- Климатическое исполнение У1, УХЛ1 и Т1 по ГОСТ 15150;
- Группа механического исполнения М3;
- Вариант исполнения взрывозащищенный;
- Вариант специсполнения коррозионностойкий, кислотостойкий и теплостойкий.

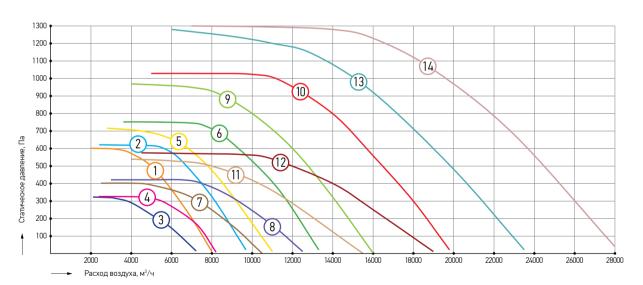
Стакан монтажный SMV

Поддон PV

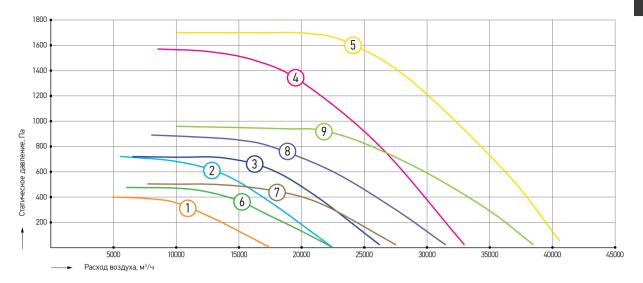
Клапан обратный КОV

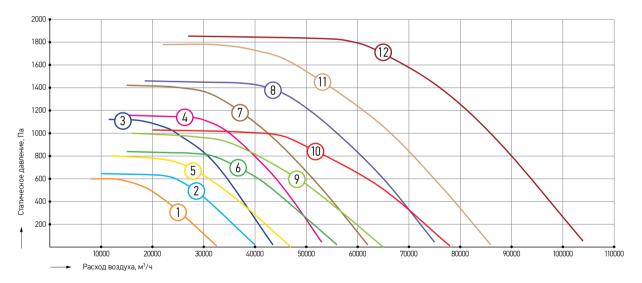
Щит управления вентилятором UM-V


Щит управления вентилятором UM-V-R


Регулятор оборотов частотный GS51

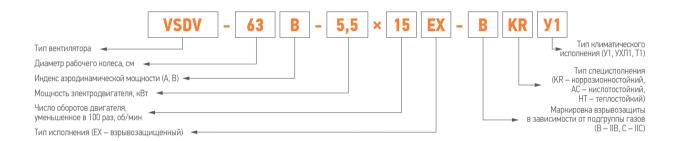
РАЗМЕРЫ И МАССА

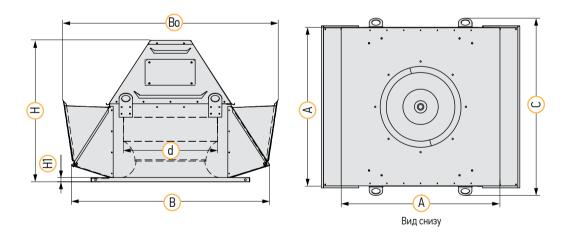

Типоразмер	Вентилятор	d, мм	А, мм	В, мм	С, мм	Н, мм	Н1, мм	Мощность, кВт	Масса, к
	VSDB-35A-0,25×15							0,25	34
25	VSDB-35B-0,37×15	255	F0/	72/	/20	/2/	20	0,37	35
35	VSDB-35A-2,2×30	355	596	726	638	634	20	2,2	43
	VSDB-35B-3×30							3	47
	VSDB-40A-0,55×15							0,55	44
,,	VSDB-40B-0,55×15		/07	997	200	744	20	0,55	45
40	VSDB-40A-3×30	400	637	776	700			3	53
	VSDB-40B-4×30							4	58
	VSDB-45A-0,75×15							0,75	66
,,	VSDB-45B-1,1×15	/50	,,,,	01/	F00	205	0.5	1,1	72
45	VSDB-45A-7,5×30	450	665	816	723	885	25	7,5	99
	VSDB-45B-7,5×30							7,5	102
	VSDB-50A-1,1×15		501	211			0.5	1,1	74
50	VSDB-50B-1,5×15	500	794	966	898	694	25	1,5	78
	VSDB-56A-0,75×10							0,75	99
Ę,	VSDB-56B-1,1×10	F.,2	0.12	1000	1050	050	25	1,1	104
56	VSDB-56A-2,2×15	560	942	1090	1052	870	25	2,2	106
	VSDB-56B-2,2×15							2,2	108
	VSDB-63A-1,1×10							1,1	99
	VSDB-63B-1,5×10		4007	4007	4440	4055	1055 25	1,5	102
63	VSDB-63A-4×15	630	1036	1234	1140	1055		4	113
	VSDB-63B-5,5×15							5,5	134
	VSDB-71A-2,2×10							2,2	135
	VSDB-71B-3×10						25	3	158
71	VSDB-71A-7,5×15	710	1087	1400	1190	1101		7,5	191
	VSDB-71B-11×15							11	203
	VSDB-80B-2,2×7,5		1252					2,2	199
	VSDB-80A-4×10					1285	25	4	208
80	VSDB-80B-5,5×10	800		1578	1362			5,5	221
	VSDB-80A-15×15	-						15	274
	VSDB-80B-18,5×15	_						18,5	296
	VSDB-90A-3×7,5							3	207
	VSDB-90B-4×7,5							4	227
90	VSDB-90A-7,5×10	900	1414	1762	1544	1505	30	7,5	249
	VSDB-90B-11×10	_						10	284
	VSDB-100A-5,5×7,5							5,5	305
	VSDB-100B-7,5×7,5							7,5	320
100	VSDB-100A-15×10	1000	1592	2003	1722	1484	30	15	377
	VSDB-100B-18,5×10	1						18,5	393
	VSDB-112A-11×7,5							11	400
	VSDB-112B-15×7,5							15	440
112	VSDB-112A-22×10	1120	1800	2326	1930	1797	35	22	460
	VSDB-112B-30×10	1						30	510
	VSDB-125A-15×7,5							15	645
	VSDB-125B-22×7,5	1			2130	1919	35	22	675
125	VSDB-125A-37×10	1250	2000	2482				37	773
	VSDB-125B-55×10	+						55	925


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDB-35A-0,25×15	1320	380	0,25	34
2	VSDB-35A-0,37×15	1320	380	0,37	35
3	VSDB-35A-2,2×30	2860	380	2,2	43
4	VSDB-35B-3×30	2860	380	3	47
5	VSDB-40A-0,55×15	1400	380	0,55	44
6	VSDB-40B-0,55×15	1400	380	0,55	45
7	VSDB-40A-3×30	2860	380	3	53
8	VSDB-40B-4×30	2850	380	4	58
9	VSDB-45A-0,75×15	1400	380	0,75	66
10	VSDB-45B-1,1×15	1420	380	1,1	72
11	VSDB-45A-7,5×30	2900	380	7,5	99
12	VSDB-45B-7,5×30	2900	380	7,5	102

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDB-50A-1,1×15	1420	380	1,1	74
2	VSDB-50B-1,5×15	1400	380	1,5	78
3	VSDB-56A-0,75×10	930	380	0,75	99
4	VSDB-56B-1,1×10	930	380	1,1	104
5	VSDB-56A-2,2×15	1410	380	2,2	106
6	VSDB-56B-2,2×15	1410	380	2,2	108
7	VSDB-63A-1,1×10	930	380	1,1	99
8	VSDB-63B-1,5×10	930	380	1,5	102
9	VSDB-63A-4×15	1410	380	4	113
10	VSDB-63B-5,5×15	1430	380	5,5	134
11	VSDB-71A-2,2×10	930	380	2,2	135
12	VSDB-71B-3×10	930	380	3	158
13	VSDB-71A-7,5×15	1440	380	7,5	191
14	VSDB-71B-11×15	1450	380	11	203

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDB-80B-2,2×7,5	700	380	2,2	199
2	VSDB-80A-4×10	950	380	4	208
3	VSDB-80B-5,5×10	950	380	5,5	221
4	VSDB-80A-15×15	1460	380	15	274
5	VSDB-80B-18,5×15	1460	380	18,5	296
6	VSDB-90A-3×7,5	700	380	3	207
7	VSDB-90B-4×7,5	720	380	4	227
8	VSDB-90A-7,5×10	950	380	7,5	249
9	VSDB-90B-11×10	970	380	11	284


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDB-100A-5,5×7,5	720	380	5,5	305
2	VSDB-100B-7,5×7,5	720	380	7,5	320
3	VSDB-100A-15×10	970	380	15	377
4	VSDB-100B-18,5×10	980	380	18,5	393
5	VSDB-112A-11×7,5	730	380	11	400
6	VSDB-112B-15×7,5	730	380	15	440
7	VSDB-112A-22×10	975	380	22	460
8	VSDB-112B-30×10	975	380	30	510
9	VSDB-125A-15×7,5	730	380	15	645
10	VSDB-125B-22×7,5	735	380	22	675
11	VSDB-125A-37×10	980	380	37	773
12	VSDB-125B-55×10	985	380	55	925


ВЕНТИЛЯТОР КРЫШНЫЙ С ВЫБРОСОМ ВВЕРХ VSDV

Общепромышленные крышные вентиляторы предназначены для перемещения газовых сред в системах вытяжной вентиляции.

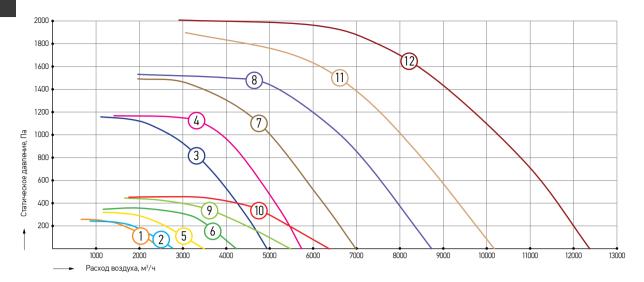
- 12 типоразмеров с расходом воздуха от 700 до 95 000 м³/ч;
- Статическое давление до 2100 Па;
- Климатическое исполнение У1, УХЛ1 и Т1 по ГОСТ 15150;
- Группа механического исполнения М3;
- Вариант исполнения взрывозащищенный;
- Вариант специсполнения коррозионностойкий, кислотостойкий и теплостойкий.

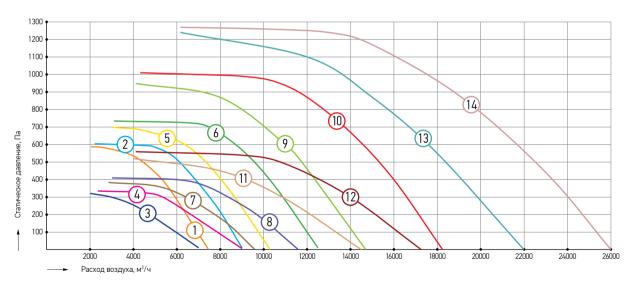
Стакан монтажный SMV

Поддон

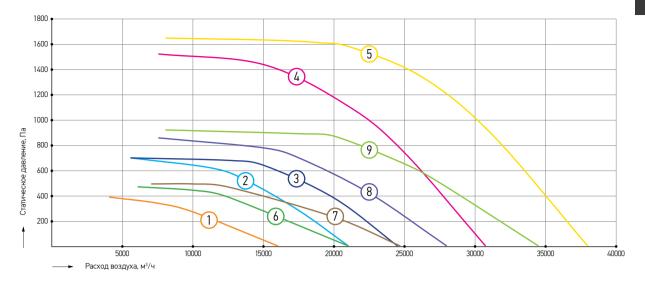
Клапан обратный

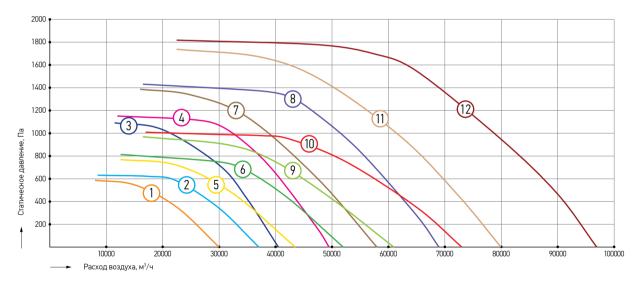
Щит управления вентилятором UM-V


Щит управления вентилятором UM-V-R


Регулятор оборотов частотный GS51

РАЗМЕРЫ И МАССА


ипоразмер	Вентилятор	d, мм	А, мм	В, мм	Во, мм	С, мм	Н, мм	Н1, мм	Мощность, кВт	Масса, кі
	VSDV-35A-0,25×15								0,25	35
25	VSDV-35B-0,37×15	255	E0/	725	75/	/20	/2/	20	0,37	36
35	VSDV-35A-2,2×30	355	596	725	756	638	634	20	2,2	44
	VSDV-35B-3×30								3	48
	VSDV-40A-0,55×15								0,55	45
	VSDV-40B-0,55×15	/00	/05	500	000	700		20	0,55	46
40	VSDV-40A-3×30	400	637	790	832	700	744		3	54
	VSDV-40B-4×30								4	59
	VSDV-45A-0,75×15								0,75	68
,,	VSDV-45B-1,1×15	/50	,,,,	055	000	700	005	0.5	1,1	74
45	VSDV-45A-7,5×30	450	665	855	908	723	885	25	7,5	101
	VSDV-45B-7,5×30								7,5	104
	VSDV-50A-1,1×15	500			40//				1,1	76
50	VSDV-50B-1,5×15	500	794	995	1064	898	694	25	1,5	80
	VSDV-56A-0,75×10								0,75	101
<u> </u>	VSDV-56B-1,1×10	F / 2	0.0	1100	10.5	1050	001		1,1	106
56	VSDV-56A-2,2×15	560	942	1180	1245	1052	824	25	2,2	108
	VSDV-56B-2,2×15								2,2	110
	VSDV-63A-1,1×10								1,1	101
	VSDV-63B-1,5×10	/20					1055	25	1,5	103
63	VSDV-63A-4×15	630	1036	1305	1389	1140			4	115
	VSDV-63B-5,5×15								5,5	136
	VSDV-71A-2,2×10								2,2	138
	VSDV-71B-3×10		1087						3	161
71	VSDV-71A-7,5×15	710		1445	1565	1190	1101	25	7,5	194
	VSDV-71B-11×15								11	206
	VSDV-80B-2,2×7,5								2,2	202
	VSDV-80A-4×10			1665		1362	1216	25	4	211
80	VSDV-80B-5,5×10	800	1252		1832				5,5	224
	VSDV-80A-15×15								15	277
	VSDV-80B-18,5×15								18,5	299
	VSDV-90A-3×7,5								3	210
	VSDV-90B-4×7,5								4	230
90	VSDV-90A-7,5×10	900	1414	1865	2100	1544	1505	30	7,5	252
	VSDV-90B-11×10	7							11	287
	VSDV-100A-5,5×7,5								5,5	310
	VSDV-100B-7,5×7,5								7,5	325
100	VSDV-100A-15×10	1000	1592	1975	2163	1722	1484	30	15	382
	VSDV-100B-18,5×10	7							18,5	398
	VSDV-112A-11×7,5								11	405
	VSDV-112B-15×7,5								15	445
112	VSDV-112A-22×10	1120	1800	2170	2450	1930	1797	35	22	465
	VSDV-112B-30×10								30	515
	VSDV-125A-15×7,5								15	651
	VSDV-125B-22×7,5	-							22	681
125	VSDV-125A-37×10	1250	2000	2345	2587	2130	1919	35		779
-	VSDV-125B-55×10	\dashv							55	931


Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDV-35A-0,25×15	1320	380	0,25	35
2	VSDV-35B-0,37×15	1320	380	0,37	36
3	VSDV-35A-2,2×30	2860	380	2,2	44
4	VSDV-35B-3×30	2860	380	3	48
5	VSDV-40A-0,55×15	1400	380	0,55	45
6	VSDV-40B-0,55×15	1400	380	0,55	46
7	VSDV-40A-3×30	2860	380	3	54
8	VSDV-40B-4×30	2850	380	4	59
9	VSDV-45A-0,75×15	1400	380	0,75	68
10	VSDV-45B-1,1×15	1420	380	1,1	74
11	VSDV-45A-7,5×30	2900	380	7,5	101
12	VSDV-45B-7,5×30	2900	380	7,5	104

Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDV-50A-1,1×15	1420	380	1,1	76
2	VSDV-50B-1,5×15	1400	380	1,5	80
3	VSDV-56A-0,75×10	930	380	0,75	101
4	VSDV-56B-1,1×10	930	380	1,1	106
5	VSDV-56A-2,2×15	1410	380	2,2	108
6	VSDV-56B-2,2×15	1410	380	2,2	110
7	VSDV-63A-1,1×10	930	380	1,1	101
8	VSDV-63B-1,5×10	930	380	1,5	103
9	VSDV-63A-4×15	1410	380	4	115
10	VSDV-63B-5,5×15	1430	380	5,5	136
11	VSDV-71A-2,2×10	930	380	2,2	138
12	VSDV-71B-3×10	930	380	3	161
13	VSDV-71A-7,5×15	1440	380	7,5	194
14	VSDV-71B-11×15	1450	380	11	206

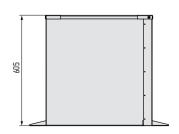
Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDV-80B-2,2×7,5	700	380	2,2	202
2	VSDV-80A-4×10	950	380	4	211
3	VSDV-80B-5,5×10	950	380	5,5	224
4	VSDV-80A-15×15	1460	380	15	277
5	VSDV-80B-18,5×15	1460	380	18,5	299
6	VSDV-90A-3×7,5	700	380	3	210
7	VSDV-90B-4×7,5	720	380	4	230
8	VSDV-90A-7,5×10	950	380	7,5	252
9	VSDV-90B-11×10	970	380	11	287

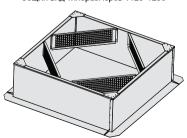
Номер характеристики	Наименование	Обороты фактические, об/мин	Напряжение питания двигателя, В	Номинальная мощность, кВт	Масса, кг
1	VSDV-100A-5,5×7,5	720	380	5,5	310
2	VSDV-100B-7,5×7,5	720	380	7,5	325
3	VSDV-100A-15×10	970	380	15	382
4	VSDV-100B-18,5×10	980	380	18,5	398
5	VSDV-112A-11×7,5	730	380	11	405
6	VSDV-112B-15×7,5	730	380	15	445
7	VSDV-112A-22×10	975	380	22	465
8	VSDV-112B-30×10	975	380	30	515
9	VSDV-125A-15×7,5	730	380	15	651
10	VSDV-125B-22×7,5	735	380	22	681
11	VSDV-125A-37×10	980	380	37	779
12	VSDV-125B-55×10	985	380	55	931

СТАКАН МОНТАЖНЫЙ SMV. СТАКАН МОНТАЖНЫЙ УТЕПЛЕННЫЙ SMV-U

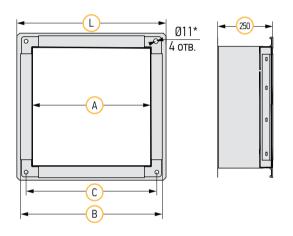
Предназначены для монтажа крышных вентиляторов на кровле зданий.

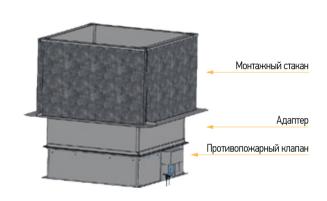
- Изготавливаются в 12 типоразмерах;
- В типоразмерах 1120-1250 установлены стенки-распорки для более высокой устойчивости конструкции;
- Стакан монтажный утепленный SMV-U применяется для предотвращения образования конденсата на внутренних стенках стакана из-за перепада температур наружного воздуха и температуры воздуха в помещении;
- Вариант специсполнения коррозионностойкий и кислотостойкий.


			C	Масса с	такана, кг	Наименование крышного	
Тип стакана*	А, мм	В, мм	С, мм	неутепленное исполнение	утепленное исполнение	вентилятора	
SMV-355, SMV-U-355	761	481	586	14	28	VSDB/VSDV-35A/B	
SMV-400, SMV-U-400	802	522	627	15	30	VSDB/VSDV-40A/B	
SMV-450, SMV-U-450	833	552	657	24	39	VSDB/VSDV-45A/B	
SMV-500, SMV-U-500	962	681	786	28	47	VSDB/VSDV-50A/B	
SMV-560, SMV-U-560	1112	831	936	34	57	VSDB/VSDV-56A/B	
SMV-630, SMV-U-630	1195	913	1024	50	74	VSDB/VSDV-63A/B	
SMV-710, SMV-U-710	1256	974	1075	52	78	VSDB/VSDV-71A/B	
SMV-800, SMV-U-800	1411	1129	1240	61	91	VSDB/VSDV-80A/B	
SMV-900, SMV-U-900	1573	1291	1402	69	103	VSDB/VSDV-90A/B	
SMV-1000, SMV-U-1000	1751	1469	1580	78	116	VSDB/VSDV-100A/B	
SMV-1120, SMV-U-1120	2055	1671	1790	163	207	VSDB/VSDV-112A/B	
SMV-1250, SMV-U-1250	2251	1867	1986	179	227	VSDB/VSDV-125A/B	

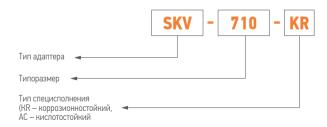

^{*} Сечение стакана квадратное

C B


Общий вид типоразмеров 1120-1250

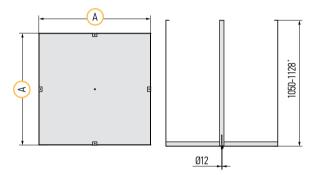

АДАПТЕР SKV ДЛЯ КРЕПЛЕНИЯ ПРОТИВОПОЖАРНЫХ КЛАПАНОВ

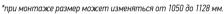
Предназначен для крепления противопожарных клапанов типа KZO-2-...-S...-X к монтажному стакану SMV и SMV-U.


- Изготавливается в 12 типоразмерах;
- Вариант специсполнения коррозионностойкий и кислотостойкий;
- Крепится под монтажный стакан.

Тип адаптера	А, мм	В, мм	С, мм	L , мм	Масса , кг	Тип монтажного стакана
SKV-355	450	510	480	526	6	SMV-355, SMV-U-355
SKV-400	500	560	530	576	6,5	SMV-400, SMV-U-400
SKV-450	550	610	580	626	7,2	SMV-450, SMV-U-450
SKV-500	650	710	680	726	8,3	SMV-500, SMV-U-500
SKV-560	800	860	830	876	10,1	SMV-560, SMV-U-560
SKV-630	900	960	930	976	11,3	SMV-630, SMV-U-630
SKV-710	950	1010	980	1026	11,9	SMV-710, SMV-U-710
SKV-800	1100	1160	1130	1176	18,5	SMV-800, SMV-U-800
SKV-900	1250	1310	1280	1326	21,2	SMV-900, SMV-U-900
SKV-1000	1450	1510	1480	1526	24,1	SMV-1000, SMV-U-1000
SKV-1120	1650	1710	1680	1726	27,3	SMV-1120, SMV-U-1120
SKV-1250	1850	1910	1880	1926	30,5	SMV-1250, SMV-U-1250

Тип монтажного стакана	Тип адаптера	Наименование противопожарного клапана
SMV-355, SMV-U-355	SKV-355	KZO-2450×450SX
SMV-400, SMV-U-400	SKV-400	KZO-2500×500SX
SMV-450, SMV-U-450	SKV-450	KZO-2550×550SX
SMV-500, SMV-U-500	SKV-500	KZO-2650×650SX
SMV-560, SMV-U-560	SKV-560	KZO-2800×800SX
SMV-630, SMV-U-630	SKV-630	KZO-2900×900SX
SMV-710, SMV-U-710	SKV-710	KZO-2950×950SX
SMV-800, SMV-U-800	SKV-800	KZO-21100×1100SX (кассет.)
SMV-900, SMV-U-900	SKV-900	KZO-21250×1250SX (кассет.)
SMV-1000, SMV-U-1000	SKV-1000	KZO-21450×1450SX (кассет.)
SMV-1120, SMV-U-1120	SKV-1120	KZO-21650×1650SX (кассет.)
SMV-1250, SMV-U-1250	SKV-1250	KZO-21850×1850SX (кассет.)




поддон РУ

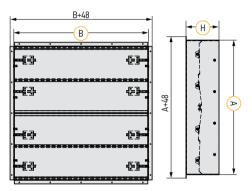
Предназначен для сбора и удаления конденсата, образовывающегося за счет конденсации влаги на металлических элементах вентилятора и монтажном стакане.

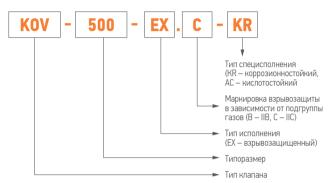
- Изготавливается в 8 типоразмерах;
- Вариант специсполнения коррозионностойкий и кислотостойкий;
- При монтаже размер может регулироваться посредством крепления поддона к отверстиям на подвесе, расположенным на разной высоте.

	PV - 3 - KR
Тип поддона	
Типоразмер 🔫	
Тип исполнения (KR – коррозионностойкий, AC – кислотостойкий)	•

Тип поддона	А, мм	Масса, кг	Наименование крышного вентилятора
			VSDB/VSDV-35A/B
PV-1	750	6,8	VSDB/VSDV-40A/B
			VSDB/VSDV-45A/B
DV 2	1000	10.0	VSDB/VSDV-50A/B
PV-2	1000	10,8	VSDB/VSDV-56A/B
DV 2	1150	1/	VSDB/VSDV-63A/B
PV-3	1150	14	VSDB/VSDV-71A/B
PV-4	1350	20	VSDB/VSDV-80A/B
PV-5	1500	23	VSDB/VSDV-90A/B
PV-6	1700	29	VSDB/VSDV-100A/B
PV-7	1900	35	VSDB/VSDV-112A/B
PV-8	2100	42	VSDB/VSDV-125A/B

Слив может быть установлен при монтаже в любом месте донной части поддона. Данная операция осуществляется путем сверления отверстия в необходимом месте и установки сливного комплекта на саморезы (поставляются совместно с поддоном).


При монтаже размер может регулироваться посредством крепления поддона к отверстиям на подвесе, расположенным на разной высоте. Данная конструктивная особенность позволяет подвешивать поддон не только в горизонтальном, но и в наклонном положении.


КЛАПАН ОБРАТНЫЙ KOV

Предназначен для установки на стороне всасывания крышного вентилятора для предотвращения образования обратной тяги.

- Изготавливается в 12 типоразмерах;
- С 900 типоразмера поставляется комплектом из двух штук;
- Для установки в монтажный стакан серии SMV и SMV-U.

Тип клапана	А, мм	В, мм	Н, мм	Масса, кг	Наименование крышного вентилятора
K0V-355	476	476	133	4,8	VSDB/VSDV-35A/B
K0V-400	517	517	133	5,3	VSDB/VSDV-40A/B
K0V-450	547	547	133	5,6	VSDB/VSDV-45A/B
K0V-500	676	676	203	11,3	VSDB/VSDV-50A/B
K0V-560	826	826	203	14,4	VSDB/VSDV-56A/B
K0V-630	908	908	203	16,1	VSDB/VSDV-63A/B
K0V-710	965	965	228	18,5	VSDB/VSDV-71A/B
K0V-800	1124	1124	268	24,5	VSDB/VSDV-80A/B
K0V-900	1286	629,5	228	17,9	VSDB/VSDV-90A/B
K0V-1000	1463	718	243	21,7	VSDB/VSDV-100A/B
K0V-1120	1664	817	213	25,5	VSDB/VSDV-112A/B
K0V-1250	1860	914,5	213	29,4	VSDB/VSDV-125A/B

КРЫШНЫЙ ВЕНТИЛЯТОР VS

- Корпус из оцинкованной стали;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Рабочее колесо из оцинкованной стали с назад загнутыми лопатками;
- Асинхронный электродвигатель с внешним ротором и встроенной защитой от перегрева (биметаллические термоконтакты). Корпус из алюминия. Степень защиты IP54. Обмотка оснащена дополнительной защитой от влаги. Класс нагревостойкости изоляции F;
- Температура перемещаемого воздуха от −40°C до +40°C.

Вентиляторы VS используются для перемещения воздуха и неагрессивных газовых смесей в системах вытяжной общеобменной вентиляции. Выполняются в наружном исполнении и монтируются на крышах таким образом, чтобы ось вращения рабочего колеса находилась вертикально. Вентиляторы имеют вертикальный выброс воздуха.

ТИПОРАЗМЕРЫ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Обозначение	Макс. расход воздуха, м³/ч**	Макс. статич. давление, Па**	Макс. скорость вращения, об/мин	Напряжение питания двигателя, В	Мощность двигателя, кВт	Макс. рабочий ток, А	Щит управления вентилятором при подключе- нии напрямую	Щит управления вентилятором при подключении через рекомендуемый регулятор скорости	Рекомендуемый регулятор скорости
VS 30/25-2E	1140	595	2500	230	0,23	1,05	UM-V1,2-TK1	UM-V1,2-TK1	ARW 3,0/1
VS 40/31-4D	1561	270	1390	380 / 230*	0,14	0,35 / 0,60*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VS 40/31-4E	1561	240	1360	230	0,18	0,88	UM-V1,2-TK1	UM-V1,2-TK1	ARW 3,0/1
VS 56/35-4E	2900	340	1360	230	0,31	1,45	UM-V1,2-TK1	UM-V1,2-TK1	GS51-02-0075A4
VS 56/35-4D	2950	320	1330	380 / 230*	0,27	0,50 / 0,86*	UM-V5-TK3	UM-V-1R2,2	ARW 3,0/1
VS 56/40-4E	4050	395	1350	230	0,54	2,50	UM-V1,2-TK1	UM-V1,2-TK1	GS51-02-0075A4
VS 56/40-4D	4050	400	1340	380 / 230*	0,54	1,10 / 1,90*	UM-V5-TK3	UM-V-1R2,2	ARW 3,0/1
VS 63/45-4E	5400	460	1230	230	0,90	4,10	UM-V1,2-TK1	UM-V1,2-TK1	GS51-02-0075A4
VS 63/45-4D	5600	450	1220	380 / 230*	0,74	1,45 / 2,51*	UM-V5-TK3	UM-V-1R2,2	ARW 7,0
VS 63/50-4D	7800	600	1340	380 / 230*	1,60	3,00 / 5,20*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VS 63/50-6D	5019	292	850	380 / 230*	0,65	1,45 / 2,51*	UM-V5-TK3	UM-V-1R2,2	GS51-T4-0220A5
VS 90/56-4D	10100	700	1370	380 / 230*	2,20	3,80 / 6,58*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VS 90/56-6D	7130	325	830	380 / 230*	0,78	1,55 / 2,68*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0150A7
VS 90/63-6D	10150	430	870	380 / 230*	1,25	2,73 / 4,73*	UM-V5-TK3	UM-V-1R2,2	GS51-02-0075A4
VS 94/56-4D	13750	940	1400	380	3	6,7	UM-V5-TK3	UM-V-3R5	GS51-02-0150A7
VS 94/63-4D	19950	1175	1430	380	5,5	11,7	UM-V7,5-TK3-PPD	UM-V-3R11	GS51-T4-0400A9
VS 94/63-6D	12780	500	940	380	2,2	5,6	UM-V5-TK3	UM-V-3R5	GS51-T4-0550A13
VS 100/71-6D	18460	625	940	380	2,2	5,6	UM-V5-TK3	UM-V-3R5	GS51-T4-0300A7

^{*} питание и ток двигателя при подключении через рекомендуемый регулятор скорости (если отметка отсутствует, питание и ток двигателя через регулятор и напрямую совпадают)

Обратный клапан КОП

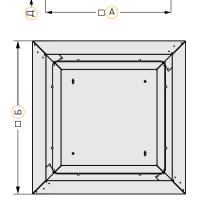
Стакан монтажный SMD/SMD-H

Щит управления вентилятором UM-V

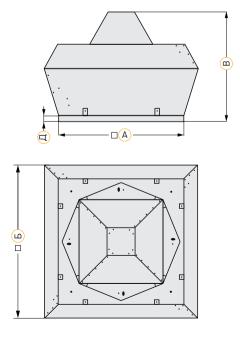
Щит управления вентилятором UM-V-R

Регулятор оборотов частотный GS51

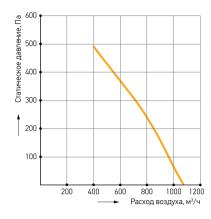
Регулятор частоты вращения вентилятора ARW


Датчик перепада давления DPD

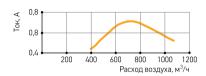
^{**} максимальный расход приведен для минимального рабочего давления, максимальное давление указано при минимальном расходе

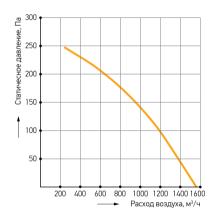

РАЗМЕРЫ И МАССА

Типоразмер	Обозначение		Разме	ры, мм		Масса, кг
типоразмер	ОООЗНАЧЕНИЕ	А	Б	В	Д	Macca, KI
30	VS 30/25-2E	300	385	245	30	9,0
10	VS 40/31-4D	400	580	355	40	15,0
40	VS 40/31-4E	400	580	355	40	16,0
	VS 56/35-4E	560	780	410	40	29,6
-,	VS 56/35-4D	560	780	410	40	30,4
56	VS 56/40-4E	560	780	425	40	29,8
	VS 56/40-4D	560	780	425	40	30,8
	VS 63/45-4E	630	870	455	40	40,5
/2	VS 63/45-4D	630	870	455	40	40,0
63	VS 63/50-4D	630	870	500	40	48,4
	VS 63/50-6D	630	870	500	40	40,7
	VS 90/56-4D	900	1250	630	40	77,0
90	VS 90/56-6D	900	1250	630	40	70,0
	VS 90/63-6D	900	1250	630	40	78,0
	VS 94/56-4D	942	1150	810	43	155
94	VS 94/63-4D	942	1150	860	43	205
	VS 94/63-6D	942	1150	860	43	185
100	VS 100/71-6D	1038	1345	905	43	225


Типоразмеры 30-90

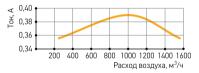
Типоразмеры 94-100

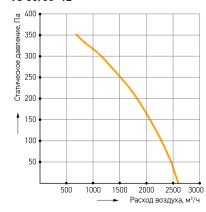

VS 30/22-2E


Помина поботи	Уровень звука	Уровень	Уровень звуковой мощности L,, дБ(A) в октавных полосах частот, Гц							
Режим работы	L, дБ (A)	125	250	500	1000	2000	4000	8000		
Шум на всасывании	74	49	65	71	67	65	62	56		
Шум на нагнетании*	76	50	65	71	71	70	63	52		

Условия испытаний: Pn=263Па.

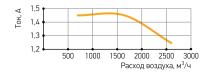
^{*} Уровень шума к окружению равен уровню шума на нагнетании

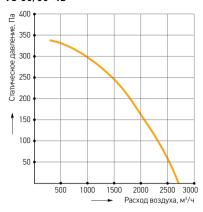

VS 40/31-4D, VS 40/31-4E


Downspacers	Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот, Гц							
Режим работы	L, дБ (A)	125	250	500	1000	2000	4000	8000	
Шум на всасывании	65	47	51	58	57	61	57	45	
Шум на нагнетании*	69	45	57	60	64	63	60	47	

Условия испытаний: Pn=168Па.

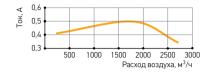
^{*} Уровень шума к окружению равен уровню шума на нагнетании

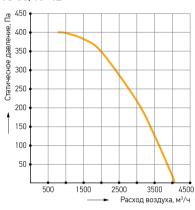

VS 56/35-4E


Режим работы Уровень зв	Уровень звука	Уровень звуковой мощности L _i , дБ(А) в октавных полосах частот, Гц							
Режим рассты	L, дБ (A)	125	250	500	1000	2000	4000	8000	
Шум на всасывании	64	51	57	58	55	56	56	49	
Шум на нагнетании*	67	50	56	61	62	60	59	52	

Условия испытаний: Pn=277Па.

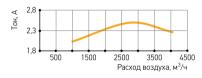
^{*} Уровень шума к окружению равен уровню шума на нагнетании

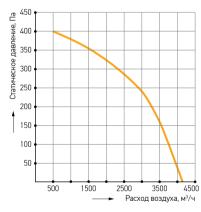

VS 56/35-4D


Режим работы	Уровень звука	Уровень	Уровень звуковой мощности L,, дБ(A) в октавных полосах частот, Гц							
	L, дБ (A)	125	250	500	1000	2000	4000	8000		
Шум на всасывании	74	55	63	64	63	70	69	57		
Шум на нагнетании*	77	59	63	68	70	73	71	60		

Условия испытаний: Pn=234Па.

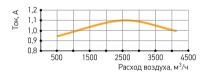
^{*} Уровень шума к окружению равен уровню шума на нагнетании

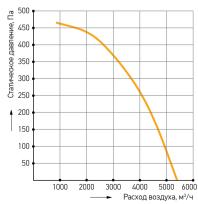

VS 56/40-4E


Режим работы Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот, Гц								
Режим рассты	L, дБ (A)	125	250	500	1000	2000	4000	8000	
Шум на всасывании	76	52	64	65	64	73	71	57	
Шум на нагнетании*	78	55	61	66	69	75	73	61	

Условия испытаний: Pn=339Па.

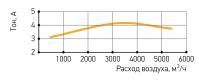
^{*} Уровень шума к окружению равен уровню шума на нагнетании

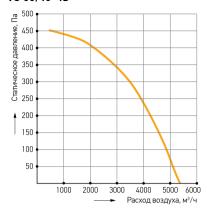

VS 56/40-4D


	Уровень звука	Уровень	звуковой	мощности	ı L _i , дБ(А) в	октавных	полосах ч	астот, Гц
Режим раооты	L, дБ (A)	125	250	500	1000	2000	4000	8000
Шум на всасывании	75	58	66	68	65	66	70	60
Шум на нагнетании*	76	62	66	69	70	69	70	61

Условия испытаний: Pn=310Па.

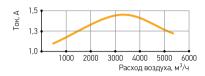
^{*} Уровень шума к окружению равен уровню шума на нагнетании

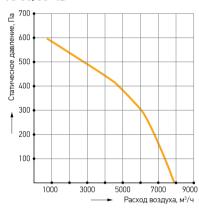

VS 63/45-4E


Режим работы	Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах ча						
Режим рассты	L, дБ (A)	125	250	500	1000	2000	4000	8000
Шум на всасывании	75	56	65	67	64	64	71	60
Шум на нагнетании*	75	56	64	68	69	68	70	61

Условия испытаний: Pn=357Па.

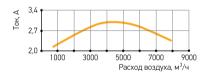
^{*} Уровень шума к окружению равен уровню шума на нагнетании

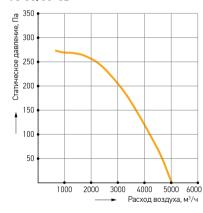

VS 63/45-4D


Режим работы	Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот,						
	L, дБ (A)	125	250	500	1000	2000	4000	8000
Шум на всасывании	75	61	69	70	67	65	60	55
Шум на нагнетании*	78	61	70	72	73	70	66	62

Условия испытаний: Pn=301Па.

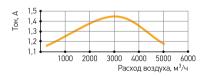
^{*} Уровень шума к окружению равен уровню шума на нагнетании

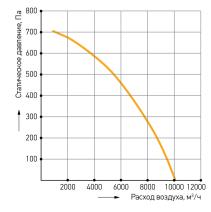

VS 63/50-4D


Powiam nahotki '	Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот, Гі							
гежим рассты	L, дБ (A)	125	250	500	1000	2000	4000	8000	
Шум на всасывании	74	61	66	70	65	65	60	53	
Шум на нагнетании*	76	65	69	70	71	69	63	58	

Условия испытаний: Pn=465Па.

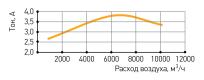
^{*} Уровень шума к окружению равен уровню шума на нагнетании


VS 63/50-6D

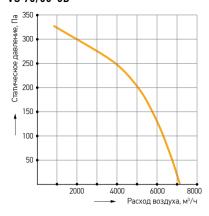

POWIAM DANOTH 1 '	Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот, Гц								
гежим рассты	L, дБ (A)	125	250	500	1000	2000	4000	8000		
Шум на всасывании	80	62	73	76	72	72	71	65		
Шум на нагнетании*	82	70	74	75	76	76	70	62		

Условия испытаний: Pn=180Па.

^{*} Уровень шума к окружению равен уровню шума на нагнетании

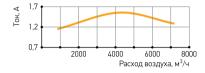

VS 90/56-4D

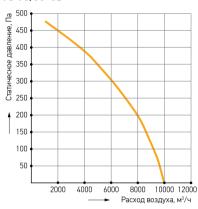
Режим работы	Уровень звука	Уровень	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот, Гц								
Режим рассты	L, дБ (A)	125	250	500	1000	2000	4000	8000			
Шум на всасывании	75	61	69	70	67	65	60	55			
Шум на нагнетании*	78	61	70	72	73	70	66	62			


Условия испытаний: Pn=548Па.

^{*} Уровень шума к окружению равен уровню шума на нагнетании

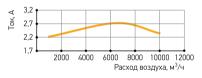
07 ПРОМЫШЛЕННЫЕ ВЕНТИЛЯТОРЫ

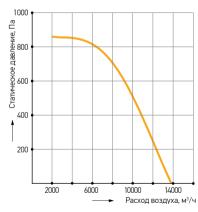

VS 90/56-6D


Режим работы	Уровень звука	звука Уровень звуковой мощности L _i , дБ(A) в октавны						полосах частот, Гц		
	L, дБ (A)	125	250	500	1000	2000	4000	8000		
Шум на всасывании	74	61	66	70	65	65	60	53		
Шум на нагнетании*	76	65	69	70	71	69	63	58		

Условия испытаний: Pn=239Па.

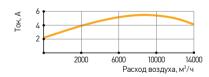
^{*} Уровень шума к окружению равен уровню шума на нагнетании

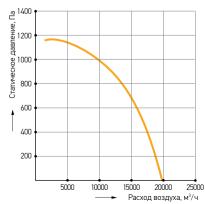

VS 90/63-6D


Режим работы Уровень зв	Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот, Ги							
Режим работы	L, дБ (A)	125	250	500	1000	2000	4000	8000	
Шум на всасывании	80	62	73	76	72	72	71	65	
Шум на нагнетании*	82	70	74	75	76	76	70	62	

Условия испытаний: Рп=345Па.

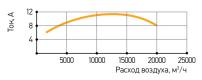
^{*} Уровень шума к окружению равен уровню шума на нагнетании


VS 94/56-4D

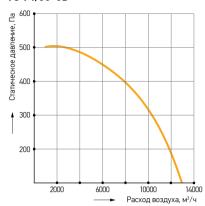

Режим работы Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот, Гц						
Режим работы	' L, дь (А)	125	500	1000	2000	4000	8000
Шум на всасывании	76	63	69	71	69	66	60
Шум на нагнетании*	78	65	71	73	71	68	62

Условия испытаний: Pn=750Па.

^{*} Уровень шума к окружению равен уровню шума на нагнетании

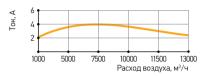


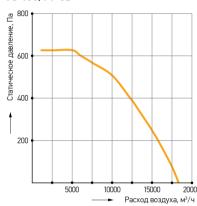
VS 94/63-4D



Режим работы	Уровень звука	Уровень з	вуковой мог	цности L _i , д[Б(А) в октавных полосах частот, Гц			
Режим работы	L, дБ (A)	125	500	1000	2000	4000	8000	
Шум на всасывании	79	64	69	75	74	70	64	
Шум на нагнетании*	81	66	71	77	76	72	66	

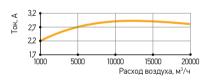
Условия испытаний: Pn=990Па. * Уровень шума к окружению равен уровню шума на нагнетании


VS 94/63-6D


Режим работы Ур	Уровень звука	Уровень звуковой мощности L _i , дБ(A) в октавных полосах частот, Гц						
	L, дБ (A)	125	500	1000	2000	4000	8000	
Шум на всасывании	70	64	69	75	74	70	64	
Шум на нагнетании*	72	51	65	65	63	59	54	

Условия испытаний: Pn=380Па.

^{*} Уровень шума к окружению равен уровню шума на нагнетании


VS 100/71-6D

Режим работы	Уровень звука	Уровень звуковой мощности L,, дБ(A) в октавных полосах частот, Гц							
	L, дБ (A)	125	500	1000	2000	4000	8000		
Шум на всасывании	72	56	64	68	67	62	57		
Шум на нагнетании*	74	58	66	70	69	64	59		

Условия испытаний: Pn=500Па.

^{*} Уровень шума к окружению равен уровню шума на нагнетании

ОБРАТНЫЙ КЛАПАН KOD

Обратные клапаны KOD предназначены для предотвращения образования обратной тяги.

РАЗМЕРЫ И МАССА

	0 0		• •	1	ı	
٥	-					
0						- (A)
۰				,	. [
		•		,		
	•	B	• • • • • • • • • • • • • • • • • • •		H—	

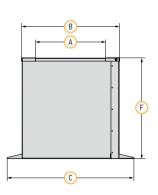
(<u>4</u>)

T = = = = = = =			dollicpbi, illi	-1		Massa
Типоразмер	А, мм	А1, мм	В, мм	В1, мм	Н, мм	Масса, кг
30	180	228	180	228	93	0,86
40	280	328	280	328	143	1,81
56	445	490	445	490	264	8,24
63	515	560	515	560	264	9,63
90	785	830	785	830	264	16,14
94	825	870	825	870	264	17,09
100	925	970	925	970	264	19,53

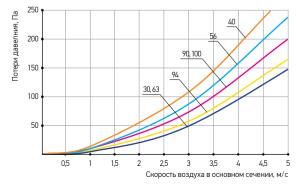
- Изготавливаются в 7 типоразмерах;
- Для установки с монтажным стаканом серии SMD и SMD-H;
- Корпус из стального оцинкованного листа;
- Смещенная ось лопатки позволяет удерживать клапан в закрытом состоянии при выключенном вентиляторе (за счет собственного веса лопатки);
- Монтируются к монтажному стакану на всасывающей стороне крышного вентилятора.

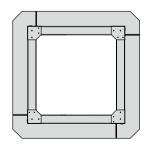
СТАКАН МОНТАЖНЫЙ SMD СТАКАН МОНТАЖНЫЙ С ШУМОГЛУШЕНИЕМ SMD-H

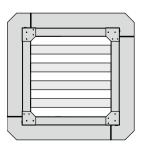
Предназначены для монтажа крышных вентиляторов VS на кровле зданий.


- Устанавливаются на горизонтальную поверхность;
- Корпус выполнен из стального оцинкованного листа марки 08ПС, имеет дополнительную теплоизоляцию и защищен от проникновения воды;
- Вариант специсполнения коррозионностойкий (нержавеющая сталь);
- Монтажные стаканы с шумоглушением имеют встроенные шумогасящие пластины;
- Возможно изготовление нестандартных исполнений для установки на наклонные поверхности.

ГАБАРИТЫ


_		Стаканы без шумоглушителя					Стаканы с шумоглушителем							Наименование
Тип стакана	А, мм	В, мм	С, мм	F, мм	Вес, кг.	А, мм	В, мм	С, мм	F, мм	Толщина пластин, мм	Расстояние между пластинами, мм	Число пластин, шт.	Вес, кг	вентилятора крышного
SMD/SMD-H-30	180	290	610	607	21	180	290	610	757	54	-	1	26	VS 30
SMD/SMD-H-40	280	390	710	607	29	280	390	710	757	54	73	2	38	VS 40
SMD/SMD-H-56	440	550	870	607	41	440	550	870	757	104	77	2	57	VS 56
SMD/SMD-H-63	507	620	940	607	47	510	620	940	807	104	50	3	69	VS 63
SMD/SMD-H-90	780	890	1210	607	68	780	890	1210	807	104	74	4	106	VS 90
SMD/SMD-H-94	820	930	1250	607	71	820	930	1250	907	104	81	4	119	VS 94
SMD/SMD-H-100	920	1030	1350	607	79	920	1030	1350	907	104	67	5	138	VS 100


ШУМОПОДАВЛЕНИЕ


Тип стакана		Ц	Јумоподавл	ение dB в ок	тавных поло	сах частот, Г	ц		L сум, дБ (A)
тип стакана	63	125	250	500	1000	2000	4000	8000	
SMD-H-30	3	4	7,5	15	28	28	22	17,5	31,8
SMD-H-40	3	5	10	18	37	44	31	23	45,0
SMD-H-56	3	5	9	17	35	41	28	21	42,2
SMD-H-63	3	4	7	14	30	32	21	15	34,4
SMD-H-90	3	5	9	16	33	38	26	19	39,5
SMD-H-94	3	4	8	15	31	35	23	17	36,7
SMD-H-100	3	5	9	17	34	39	27	20	40,5

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ SMD-H

БЛОК УПРАВЛЕНИЯ UM VR-E

- Корпус блока выполнен из термостойкого пластика;
- На основе программируемого контроллера M245 фирмы VERTRO:
- Для предотвращения поражения электрическим током питание системы управления и защиты осуществляется через трансформатор 24VAC с гальванической развязкой от питающей сети;
- Блоки оснащены пластиковой прозрачной крышкой;
- Степень защиты корпуса при закрытой крышке IP65, при открытой — IP40.

Используется для управления вентиляционной системой с электрическим нагревателем, водяным или фреоновым охладителем, перекрестноточным рекуператором, либо системой с электрическим нагревателем, водяным или фреоновым охладителем, регулируемой рециркуляцией или роторным регенератором.

СТАНДАРТНЫЕ ФУНКЦИИ:

- Подключение к системе BMS по протоколу ModBus (RS485);
- Ручной пуск и остановка из управляющего блока;
- Внешний пуск и остановка (тип сигнала сухой контакт);
- Отключение системы по сигналу от пожарной сигнализации (тип сигнала – НЗ сухой контакт);
- Подключение и защита вентилятора с термоконтактами (питание 220 В или 380 В, ток до 9 А, до 2-х вентиляторов);
- Подключение и защита внешнего устройства управления вентилятором (питание 220 В или 380 В, ток до 9 А);
- Подключение и защита электрического нагревателя (мощность до 60 кВт, 2 ступени);
- Управление компрессорно-конденсаторным блоком;
- Управление приводами: клапана водяного охладителя, заслонки на притоке/вытяжке, заслонки рециркуляции, заслонки на байпасе рекуператора;
- Подключение датчиков температуры: приточного воздуха, воздуха в помещении или вытяжного воздуха (каскадное регулирование), наружного воздуха (компенсация установленного значения регулируемой температуры и ограничение работы охладителя),
- Подключение датчиков: засорения фильтра, перепада давления на вентиляторе и на рекуператоре;
- Защита от обмерзания рекуператора открытие байпаса.

ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ:

- Встроенный недельный таймер;
- Дистанционная сигнализация работы/аварии системы;
- Подключение устройства дистанционного управления RTF;
- Подключение утепленных заслонок КВУ (питание 220 В или 380 В, ток до 9 А, до 2-х заслонок);
- Подключение и защита вентиляторов с термоконтактами и без них (питание 220 В или 380 В, общим током до 65 А);
- Подключение и защита вентиляторов с термисторами (питание 220 В или 380 В, общим током до 65 А);
- Подключение и защита внешнего устройства управления вентиляторами (питание 380 В, общим током до 65 А);
- Управление резервным двигателем или вентилятором;
- Защита от обмерзания рекуператора отключение приточного вентилятора;
- Управление роторным регенератором.

РАЗМЕРЫ

Блок управления UM VR-E (E15, E22, E30) — 408x560x153 мм (54 модуля).

Силовой щит UM-E

Датчик температуры воздуха STN

Регулятор оборотов частотный GS51

Датчик температуры воздуха STK

Регулятор частоты вращения вентилятора ARW

Датчик температуры воздуха STP

Привод для воздушных заслонок

Пульт дистанционного управления RTF

Датчик перепада давления DPD

Выносная панель управления для блоков UM-VR

БЛОК УПРАВЛЕНИЯ UM CA-E

- Корпус блока выполнен из термостойкого пластика;
- На основе программируемого контроллера µARIA фирмы Carel;
- Для предотвращения поражения электрическим током питание системы управления и защиты осуществляется через трансформатор 24VAC с гальванической развязкой от питающей сети:
- Блоки оснащены пластиковой прозрачной крышкой;
- Степень защиты корпуса при закрытой крышке IP65, при открытой – IP40.

Используется для управления вентиляционной системой с электрическим нагревателем, водяным или фреоновым охладителем, перекрестноточным рекуператором, либо системой с электрическим нагревателем, водяным или фреоновым охладителем, регулируемой рециркуляцией или роторным регенератором.

СТАНДАРТНЫЕ ФУНКЦИИ:

- Подключение к системе BMS по протоколу ModBus (RS485);
- Ручной пуск и остановка из управляющего блока;
- Внешний пуск и остановка (тип сигнала сухой контакт);
- Отключение системы по сигналу от пожарной сигнализации (тип сигнала – НЗ сухой контакт);
- Подключение и защита вентилятора с термоконтактами (питание 220 В или 380 В, ток до 9 А, до 2-х вентиляторов);
- Подключение и защита внешнего устройства управления вентилятором (питание 220 В или 380 В, ток до 9 А);
- Подключение и защита электрического нагревателя (мощность до 60 кВт. 2 ступени):
- Управление компрессорно-конденсаторным блоком;
- Управление приводами: клапана водяного охладителя, заслонки на притоке/вытяжке, заслонки рециркуляции, заслонки на байпасе рекуператора;
- Подключение датчиков температуры: приточного воздуха, воздуха в помещении или вытяжного воздуха (каскадное регулирование), наружного воздуха (компенсация установленного значения регулируемой температуры и ограничение работы охладителя),
- Подключение датчиков: засорения фильтра, перепада давления на вентиляторе и на рекуператоре;
- Защита от обмерзания рекуператора открытие байпаса.

ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ:

- Встроенный недельный таймер;
- Дистанционная сигнализация работы/аварии системы;
- Подключение устройства дистанционного управления RTF;
- Подключение утепленных заслонок КВУ (питание 220 В или 380 В, ток до 9 А, до 2-х заслонок);
- Подключение и защита вентиляторов с термоконтактами и без них (питание 220 В или 380 В, общим током до 65 А);
- Подключение и защита вентиляторов с термисторами (питание 220 В или 380 В, общим током до 65 А);
- Подключение и защита внешнего устройства управления вентиляторов (питание 380 В, общим током до 65 А);
- Управление резервным двигателем или вентилятором;
- Защита от обмерзания рекуператора отключение приточного вентилятора;
- Управление роторным регенератором.

РАЗМЕРЫ

Блок управления UM CA-E9 (E15, E22, E30) -408x560x153 мм (54 модуля).

Силовой щит UM-E

Датчик температуры воздуха STN

Регулятор оборотов частотный GS51

Датчик температуры воздуха STK

Регулятор частоты вращения вентилятора ARW

Датчик температуры воздуха STP

Привод для воздушных заслонок

Пульт дистанционного управления RTF

Датчик перепада давления DPD

Выносная панель управления для блоков UM-VR

СИЛОВОЙ ЩИТ UM-E

Силовые щиты UM-E используются для подачи питания на канальные электрические воздухонагреватели NPE, а также на секции электрических воздухонагревателей центральных кондиционеров AV, AVM, AVMD, AVL, AVLD мощностью от 45 кВт (на нагреватели мощностью до 30 кВт подача питания осуществляется непосредственно с блоков управления UM VR-E, UM CR3/CR4-E и UM CA-E).

 Корпус щита выполнен из металла. Степень защиты корпуса при закрытой крышке – IP 65.

РАЗМЕРЫ

Типоразмер	UM-E45 (2×2) UM-E45 (2×4)	UM-E60 (2×2) UM-E60 (2×4)	UM-E75 (2×2) UM-E75 (2×4)	UM-E90 (2×4)	UM-E120 (2×4)
Размеры (Ш×В×Г), мм	400×600×200		500×700×200		

ТИП ИСПОЛНЕНИЯ

UM-E45 (2×2) — силовой щит для подключения электрических воздухонагревателей мощностью до 45 кВт с 2-мя ступенями мощности (22,5 кВт + 22,5 кВт).

UM-E45 (2×4) — силовой щит для подключения электрических воздухонагревателей мощностью до 45 кВт с 4-мя ступенями мощности (7,5 кВт + 15 кВт + 7,5 кВт + 15 кВт).

UM-E60 (2×2) — силовой щит для подключения электрических воздухонагревателей мощностью до 60 кВт с 2-мя ступенями мощности (30 кВт + 30 кВт).

UM-E60 (2×4) — силовой щит для подключения электрических воздухонагревателей мощностью до 60 кВт с 4-мя ступенями мощности (15 кВт + 15 кВт + 15 кВт + 15 кВт).

UM-E75 (2×2) — силовой щит для подключения электрических воздухонагревателей мощностью до 75 кВт с 2-мя ступенями мощности (37,5 кВт + 37,5 кВт).

UM-E75 (2×4) — силовой щит для подключения электрических воздухонагревателей мощностью до 75 кВт с 4-мя ступенями мощности (15 кВт + 22,5 кВт + 15 кВт + 22,5 кВт).

UM-E90 (2×4) — силовой щит для подключения электрических воздухонагревателей мощностью до 90 кВт с 4-мя ступенями мощности (22,5 кВт + 22,5 кВт + 22,5 кВт + 22,5 кВт).

UM-E120 (2×4) — силовой щит для подключения электрических воздухонагревателей мощностью до 120 кВт с 4-мя ступенями мощности (30 кВт + 30 кВт + 30 кВт + 30 кВт).

ФУНКЦИИ:

- Подключение и защита электрических воздухонагревателей мощностью от 45 кВт;
- Внешнее управление нагревателя (тип сигнала сухой контакт) в 2 ступени мощности (щиты 2x2);
- Внешнее управление нагревателя (тип сигнала сухой контакт) в 4 ступени мощности (щиты 2х4);
- Внешняя индикация «авария» (тип сигнала сухой контакт);
- Индикация наличия питания.

БЛОК УПРАВЛЕНИЯ UM VR-W

- Корпус блока выполнен из термостойкого пластика;
- На основе программируемого контроллера М245 фирмы
- Для предотвращения поражения электрическим током питание системы управления и защиты осуществляется через трансформатор 24VAC с гальванической развязкой от питающей сети:
- Блоки оснащены пластиковой прозрачной крышкой;
- Степень защиты корпуса при закрытой крышке IP65, при открытой – ІР4О.

Используется для управления вентиляционной системой с водяным нагревателем, водяным или фреоновым охладителем, перекрестноточным рекуператором, либо системой с водяным нагревателем, фреоновым охладителем, регулируемой рециркуляцией или роторным регенератором.

СТАНДАРТНЫЕ ФУНКЦИИ:

- Подключение к системе BMS по протоколу ModBus (RS485)
- Ручной пуск и остановка из управляющего блока;
- Внешний пуск и остановка (тип сигнала сухой контакт)
- Отключение системы по сигналу от пожарной сигнализации (тип сигнала – НЗ сухой контакт);
- Подключение и защита вентилятора с термоконтактами (питание 220 В или 380 В, ток до 9 А, до 2-х вентиляторов);
- Подключение и защита внешнего устройства управления вентилятором (питание 220 В или 380 В, ток до 9 А);
- Подключение и защита циркуляционного насоса без термоконтактов (питание 220 В. ток до 6 А):
- Управление приводами заслонки: на притоке/вытяжке, рециркуляции, на байпасе рекуператора;
- Управление приводами клапана: водяного нагревателя и охлади-
- Управление компрессорно-конденсаторным блоком:
- Подключение датчиков температуры: приточного воздуха, воздуха в помещении или вытяжного воздуха (каскадное регулирование), наружного воздуха (компенсация установленного значения регулируемой температуры и ограничение работы охладителя), обратной воды (активная защита от замерзания в рабочем режиме и поддержание установленного значения в дежурном режиме);
- Подключение капиллярного термостата (пассивная защита от замерзания водяного нагревателя);

- Подключение датчиков: засорения фильтра, перепада давления на вентиляторе и рекуператоре;
- Защита от обмерзания рекуператора открытие байпаса.

ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ:

- Встроенный недельный таймер;
- Дистанционная сигнализация работы/аварии системы;
- Подключение устройства дистанционного управления RTF:
- Подключение утепленных заслонок КВУ (питание 220 В или 380 В. ток до 9 А, до 2-х заслонок);
- Подключение и защита вентиляторов с термоконтактами и без них (питание 220 В или 380 В. общим током до 65 А):
- Подключение и защита вентиляторов с термисторами (питание 220 В или 380 В. общим током до 65 А):
- Подключение и защита внешнего устройства управления вентиляторов (питание 380 В. ток до 50 А):
- Подключение и защита циркуляционного насоса с термоконтактами (питание 220 В или 380 В, ток до 6 А);
- Управление резервным двигателем или вентилятором.
- Защита от обмерзания рекуператора отключение приточного вентилятора;
- Управление роторным регенератором.

РАЗМЕРЫ

Блок управления UM VR-W – 408×560×153 мм (54 модуля).

частотный GS51

Регулятор оборотов Регулятор частоты вращения вентилятора ARW

Привод для воздушных заслонок

Датчик перепада давления DPD

Термостат STW KP-61

Датчик температуры воздуха STN

Датчик температуры воздуха STK

Датчик температуры воды VŚP

Датчик температуры воды VŚŃ

Датчик температуры воздуха STP

Смесительный узел ONX

Пульт дистанционного управления RTF

Выносная панель управления для блоков UM-VR

БЛОК УПРАВЛЕНИЯ UM CA-W

- Корпус блока выполнен из термостойкого пластика;
- На основе программируемого контроллера µARIA фирмы Carel;
- Для предотвращения поражения электрическим током питание системы управления и защиты осуществляется через трансформатор 24VAC с гальванической развязкой от питающей сети:
- Блоки оснащены пластиковой прозрачной крышкой;
- Степень за щиты корпуса при закрытой крышке IP65, при открытой – ІР40.

Используется для управления вентиляционной системой с водяным нагревателем, водяным охладителем, роторным регенератором или регулируемой рециркуляцией.

СТАНДАРТНЫЕ ФУНКЦИИ:

- Подключение к системе BMS по протоколу ModBus (RS485)
- Управление и настройка блока управления с помощью мобильного приложения (Bluetooth, NFC);
- Ручной пуск и остановка из управляющего блока;
- Внешний пуск и остановка (тип сигнала сухой контакт)
- Отключение системы по сигналу от пожарной сигнализации (тип сигнала – НЗ сухой контакт):
- Подключение и защита вентилятора с термоконтактами (питание 220 В или 380 В, ток до 9 А, до 2-х вентиляторов);
- Подключение и защита внешнего устройства управления вентилятором (питание 220 В или 380 В, ток до 9 А);
- Подключение и защита циркуляционного насоса без термоконтактов (питание 220 В, ток до 6 А);
- Управление приводами заслонки: на притоке/вытяжке, рециркуляции, на байпасе рекуператора;
- Управление приводами клапана: водяного нагревателя и охладителя;
- Управление компрессорно-конденсаторным блоком;
- Подключение датчиков температуры: приточного воздуха, воздуха в помещении или вытяжного воздуха (каскадное регулирование), наружного воздуха (компенсация установленного значения регулируемой температуры и ограничение работы охладителя), обратной воды (активная защита от замерзания в рабочем режиме и поддержание установленного значения в дежурном режиме);

- Подключение капиллярного термостата (пассивная защита от замерзания водяного нагревателя);
- Подключение датчиков: засорения фильтра, перепада давления на вентиляторе и рекуператоре;
- Защита от обмерзания рекуператора открытие байпаса.

ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ:

- Встроенный недельный таймер;
- Дистанционная сигнализация работы/аварии системы;
- Подключение устройства дистанционного управления RTF;
- Подключение утепленных заслонок КВУ (питание 220 В или 380 В, ток до 9 А, до 2-х заслонок);
- Подключение и защита вентиляторов с термоконтактами и без них (питание 220 В или 380 В, общим током до 65 А);
- Подключение и защита вентиляторов с термисторами (питание 220 В или 380 В, общим током до 65 А);
- Подключение и защита внешнего устройства управления вентиляторов (питание 380 В. ток до 50 А):
- Подключение и защита циркуляционного насоса с термоконтактами (питание 220 В или 380 В, ток до 6 А);
- Управление резервным двигателем или вентилятором.
- Защита от обмерзания рекуператора отключение приточного вентилятора;
- Управление роторным регенератором.

РАЗМЕРЫ

Блок управления UM CA-W – 408×560×153 мм (54 модуля).

частотный GS51

Регулятор оборотов Регулятор частоты вращения вентилятора ARW

Привод для воздушных заслонок

Датчик перепада давления DPD

Термостат STW KP-61

Датчик температуры воздуха STN

Датчик температуры воздуха STK

Латчик температуры воды VŚP

Датчик температуры воды VŚŃ

Датчик температуры воздуха STP

Смесительный узел ONX

Пульт дистанционного управления RTF

Выносная панель управления для блоков ThTune

БЛОК УПРАВЛЕНИЯ UM CR4-W/E

- Корпус блока выполнен из термостойкого пластика;
- На основе программируемого контроллера с.рСО фирмы Carel:
- Для предотвращения поражения электрическим током питание системы управления и защиты осуществляется через трансформатор 24VAC с гальванической развязкой от питающей сети:
- Блоки оснащены пластиковой прозрачной крышкой;
- Степень защиты корпуса при закрытой крышке IP65, при открытой – IP40.

Блоки UM CR4-W используются для управление установками с водяным нагревателем, блоки UM CR4-E — для управления установками с электрическими нагревателями. Также доступно управление секциями водяных и/или фреоновых охладителей, перекрестноточных или роторных рекуператоров, смешения. При наличии основного нагревателя, охладителя и догревателя возможно управление процессом осушения.

СТАНДАРТНЫЕ ФУНКЦИИ:

- Подключение к системе BMS по протоколу ModBus (RS485)
- Ручной пуск и остановка из управляющего блока;
- Внешний пуск и остановка (тип сигнала сухой контакт)
- Отключение системы по сигналу от пожарной сигнализации (тип сигнала НЗ сухой контакт);
- Подключение и защита вентилятора с термоконтактами (питание 220 В или 380 В, ток до 9 А, до 2-х вентиляторов);
- Подключение и защита внешнего устройства управления вентилятором (питание 220 В или 380 В, ток до 9 А);
- Подключение и защита циркуляционного насоса без термоконтактов (питание 220 В, ток до 6 А);
- Управление приводами заслонки: на притоке/вытяжке, рециркуляции, на байпасе рекуператора;
- Управление приводами клапана: водяного нагревателя и охладителя;
- Управление компрессорно-конденсаторным блоком;
- Подключение датчиков температуры: приточного воздуха, воздуха в помещении или вытяжного воздуха (каскадное регулирование), наружного воздуха (компенсация установленного значения регулируемой температуры и ограничение работы охладителя), обратной воды (активная защита от замерзания в рабочем режиме и поддержание установленного значения в дежурном режиме);
- Подключение капиллярного термостата (пассивная защита от замерзания водяного нагревателя);
- Подключение датчиков: засорения фильтра, перепада давления на вентиляторе и рекуператоре;

- Защита от обмерзания рекуператора открытие байпаса;
- Подключение датчиков температуры и влажности: приточного воздуха, наружного воздуха и воздуха в помещении или вытяжного воздуха (регулирование осушения и увлажнения и/или смешения).

ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ:

- Встроенный недельный таймер;
- Дистанционная сигнализация работы/аварии системы;
- Подключение устройства дистанционного управления RTF;
- Подключение утепленных заслонок КВУ (питание 220 В или 380 В, ток до 9 А, до 2-х заслонок);
- Подключение и защита вентиляторов с термоконтактами и без них (питание 220 В или 380 В, общим током до 65 А);
- Подключение и защита вентиляторов с термисторами (питание 220 В или 380 В, общим током до 65 А);
- Подключение и защита внешнего устройства управления вентиляторов (питание 380 В, ток до 50 А);
- Подключение и защита циркуляционного насоса с термоконтактами (питание 220 В или 380 В, ток до 6 А);
- Управление резервным двигателем или вентилятором.
- Защита от обмерзания рекуператора отключение приточного вентилятора;
- Управление роторным регенератором.

PA3MEP1

Блок управления UM CR4-W/E – 408x560x153 мм (54 модуля).

Датчик температуры/ влажности DPPT011000

Датчик температуры/ влажности ПРПС210000

Датчик температуры воды NTC015WH01

Датчик температуры/ влажности насыщения DPDT011000

Датчик температуры/ влажности DPWC111000

ЩИТ УПРАВЛЕНИЯ ВЕНТИЛЯТОРОМ UM-V

Блоки управления UM-V используются для управления вентиляторами VK, VL, VP, VS, а также вентиляторными секциями центральных кондиционеров серий AV, AVM, AVMD, AVL, AVLD.

- Корпус щитов UM-V1.2 UM-V30 выполнен из термостойкого пластика и оснащен пластиковой прозрачной крышкой (UM-V22, UM-V30 – непрозрачной пластиковой крышкой);
- Степень защиты корпуса при закрытой крышке IP65, при открытой — IP40;
- Корпус и крышка щитов UM-V37 и UM-V45 выполнены из оцинкованной стали толщиной 1,5 мм.

РАЗМЕРЫ

Типоразмер	UM-V1.2-TK1	UM-V7,5-TK3-PPD	UM-V15-TK3-PPD	UM-V22-TK3-PPD	UM-V37-TK3-PPD
	UM-V5-TK3	UM-V11-TK3-PPD	UM-V18.5-TK3-PPD	UM-V30-TK3-PPD	UM-V45-TK3-PPD
Размеры (Ш×В×Г), мм	300×410×153	300×560×153	300×560×153	300×600×215	500×700×250

ТИП ИСПОЛНЕНИЯ

UM-V1.2-ТК1 — щит управления однофазным вентилятором с термоконтактами (мощность до 1,2 кВт, рабочий ток до 6,5 A); UM-V5-ТК3 — щит управления трехфазным вентилятором с термоконтактами (мощность до 5 кВт, рабочий ток до 8,5 A); UM-V7.5 (11, 15, 18.5, 22, 30, 37, 45) — ТК3-РРD — щит управления трехфазным вентилятором с термоконтактами и питанием двигателя 380/660В (мощность до 7.5, 11, 15, 18.5, 22, 30, 37, 45 кВт соответственно). Щит снабжен устройством плавного пуска РРD.

ФУНКЦИИ:

- Подключение и защита вентилятора;
- Подключение датчика перепада давления на вентиляторе;
- Управление приводом воздушной заслонки (питание 220 В, с возвратной пружиной / без возвратной пружины);
- Ручной пуск и остановка;
- Внешний пуск и остановка (тип сигнала сухой контакт);
- Местная индикация «работа / авария»;
- Внешняя индикация «работа / авария» (тип сигнала сухой контакт);
- Остановка по сигналу от пожарной сигнализации (тип сигнала – НЗ сухой контакт);
- Возможность подключения к системе диспетчеризации по протоколам связи отсутствует;
- Возможно добавление функционала по запросу.

Регулятор оборотов электронный FSC

Регулятор частоты вращения вентилятора ARW

Привод для воздушных заслонок

Датчик перепада давления DPD

Пульт дистанционного управления RTF

ЩИТ УПРАВЛЕНИЯ ВЕНТИЛЯТОРОМ UM-V-R

Щиты управления UM-V-R используются для управления вентиляторами VL, VP, VS, а также вентиляторными секциями центральных кондиционеров серий AV, AVM, AVMD, AVL, AVLD, подключаемыми через частотные регуляторы оборотов.

- Корпус щита выполнен из термостойкого пластика и оснащен прозрачной пластиковой крышкой;
- Степень защиты корпуса при закрытой крышке IP65, при открытой – IP40.

РАЗМЕРЫ

Типоразмер	UM-V-1R2,2	UM-V-3R5	UM-V-3R15	UM-V-3R22	UM-V-3R45
	UM-V-3R2,2	UM-V-3R11	UM-V-3R18,5	UM-V-3R30	UM-V-3R55
Размеры (Ш×В×Г), мм		300×410×153			

тип исполнения

UM-V-1R2,2 — щит управления трехфазным вентилятором через однофазный частотный регулятор (мощность до 2,2 кВт, рабочий ток до 11 A);

UM-V-3R2,2 (11, 15, 18.5, 22, 30, 45, 55) — щит управления трехфазным вентилятором через трехфазный частотный регулятор (мощность до 2.2, 11, 15, 18.5, 22, 30, 45, 55 кВт соответственно).

ФУНКЦИИ:

- Подключение и защита частотного регулятора вентилятора;
- Подключение датчика засорения фильтра;
- Управление приводом воздушной заслонки (питание 220 В, с возвратной пружиной / без возвратной пружины);
- Ручной пуск и остановка;
- Внешний пуск и остановка (тип сигнала сухой контакт);
- Местная индикация «работа / авария»;
- Местная индикация наличия питания;
- Местная индикация засорения фильтра;
- Внешняя индикация «работа / авария» (тип сигнала сухой контакт);
- Остановка по сигналу от пожарной сигнализации (тип сигнала НЗ сухой контакт);
- Возможность подключения к системе диспетчеризации по протоколам связи отсутствует.

Регулятор оборотов частотный GS51

Привод для воздушных заслонок

Датчик перепада давления DPD

Пульт дистанционного управления RTF

ЩИТ УПРАВЛЕНИЯ ВЕНТИЛЯТОРОМ UM-V-R-RU

Щиты управления UM-V-R-RU используются для управления вентиляторами VL, VP, VS, а также вентиляторными секциями центральных кондиционеров AV, AVM, AVMD, AVL, AVLD, подключаемыми через частотные регуляторы оборотов с резервированием.

- Корпус щита выполнен из термостойкого пластика и оснащен прозрачной пластиковой крышкой;
- Степень защиты корпуса при закрытой крышке IP65, при открытой — IP40.

РАЗМЕРЫ

Типоразмер	UM-V-1R2,2-RU2,2	UM-V-3R5-RU5	UM-V-3R15-RU15	UM-V-3R22-RU22	UM-V-3R45-RU45
	UM-V-3R2,2-RU2,2	UM-V-3R11-RU11	UM-V-3R18,5-RU18,5	UM-V-3R30-RU30	UM-V-3R55-RU55
Размеры (Ш×В×Г), мм					

тип исполнения

UM-V-1R2,2-RU2,2 — щит управления трехфазным вентилятором через однофазный частотный регулятор (мощность до 2,2 кВт, рабочий ток до 11 A) с резервом (двигатель/вентилятор)

UM-V-3R2,2-RU2,2 (11, 15, 18.5, 22, 30, 45, 55) — щит управления трехфазным вентилятором через трехфазный частотный регулятор (мощность до 2.2 (11, 15, 18.5, 22, 30, 45, 55) кВт с резервом (двигатель/вентилятор).

ФУНКЦИИ:

- Подключение и защита частотного регулятора основного двигателя/вентилятора;
- Подключение и защита частотного регулятора резервного двигателя/вентилятора;
- Автоматическое включение резерва при аварии основного двигателя/вентилятора;
- Подключение датчика засорения фильтра;
- Подключение датчика перепада давления на вентиляторе;
- Управление приводом воздушной заслонки наружного воздуха (питание 220 В, с возвратной / без возвратной пружины);
- Управление приводом воздушной заслонки на основном вентиляторе (питание 220 В, с возвратной / без возвратной пружины);

- Управление приводом воздушной заслонки на резервном вентиляторе (питание 220 В, с возвратной / без возвратной пружины);
- Ручной пуск и остановка;
- Внешний пуск и остановка (тип сигнала сухой контакт);
- Местная индикация «работа / авария»;
- Местная индикация наличия питания;
- Местная индикация засорения фильтра;
- Внешняя индикация «работа / авария» (тип сигнала – сухой контакт);
- Остановка по сигналу от пожарной сигнализации (тип сигнала – НЗ сухой контакт).

Регулятор оборотов частотный FC-051

Привод для воздушных заслонок

Датчик перепада давления DPD

Пульт дистанционного управления RTF

БЛОК УПРАВЛЕНИЯ ЗАВЕСОЙ UM-TVP

Блоки управления UM-TVP используются для управления промышленными воздушно-тепловыми завесами TVP

- Корпус блока выполнен из термостойкого пластика. Силовая часть расположена в одном корпусе с системой управления и защиты;
- Блоки оснащены пластиковой прозрачной крышкой;
- Степень защиты корпуса при закрытой крышке IP65, при открытой — IP40.

ВЫБОР БЛОКА УПРАВЛЕНИЯ

T TVD	Типоразмер завесы TVP							
Тип исполнения завесы TVP	60-30	60-35	70-40DM	70-40	80-50	90-50		
TVP E	UM-TVP-E15	M-TVP-E15 UM-TVP-E30						
TVP W	UM-TVP-W U							
TVP W (2 шт)	UM-TVP-W-2 UM-TVP-W2-							

РАЗМЕРЫ

Типоразмер	UM-TVP-W	UM-TVP-W-2	UM-TVP-W-B14	UM-TVP-W2-B14-B14	UM-TVP-E15	UM-TVP-E30	UM-TVP-E45-B14
Ширина, мм	300	300	300	300	300	300	400
Высота, мм	410	410	410	410	410	410	600
Глубина, мм	153	153	153	153	153	153	200

тип исполнения

UM-TVP-E15 (30,45) – блок управления завесой TVP E (мощность нагревателя 15 (30, 45) кВт);

UM-TVP-W – блок управления завесой TVP W с водяным нагревателем;

UM-TVP-W-2 – блок управления двумя завесами TVP W с водяным нагревателем (до типоразмера TVP 90-50);

UM-TVP-W2-B14-B14 - блок управления двумя завесами TVP W с водяным нагревателем (для типоразмера TVP 90-50).

ФУНКЦИИ:

- Подключение и защита вентилятора с термоконтактами;
- Подключение и защита электрического нагревателя (UM-TVP-E);
- Подключение и защита циркуляционного насоса (UM-TVP-W, UM-TVP-W-2);
- Подключение и защита двух вентиляторов с термоконтактами (UM-TVP-W-2).
- Ручной пуск и остановка;
- Внешний пуск и остановка (тип сигнала сухой контакт);
- Местная индикация «работа / авария»;
- Возможность подключения к системе диспетчеризации по протоколам связи отсутствует.

ЩИТ УПРАВЛЕНИЯ ВЕНТИЛЯТОРАМИ ДЫМОУДАЛЕНИЯ И ПОДПОРА UM-DU-V C ABP

Используется для пуска и защиты трехфазных вентиляторов дымоудаления.

- В щитах управления UM-DU-V15 UM-DU-V75 установлено устройство плавного пуска двигателя типа PPDпереключение «звезда-треугольник»;
- Соответствуют требованиям ГОСТ 53325-2012 «Техника пожарная. Технические средства пожарной автоматики.
 Общие технические требования» и требованиям регламента ТР ЕАЭС 043/2017;
- Устройство ABP автоматическое переключение на резервный ввод линии питания;
- Контроль линий связи от щита до двигателя вентилятора;
- Индикация подачи питания на щит, работы/аварии, срабатывании пожарной сигнализации;
- Звуковое оповещение о пожаре;
- Внешнее включение/выключение вспомогательного оборудования (тип сигнала – сухой контакт);
- Корпус щита выполнен из металла. Степень защиты корпуса IP 66 при закрытой крышке;
- Температура окружающей среды: от 5°C до +55°C.

Типоразмер	Мощность вентилятора, кВт	Наличие устройства плавного пуска (PPD)	Размеры (Ш×В×Г), мм
UM-DU-V0,55	0,55	Нет	600×500×200
UM-DU-V2,2	2,2	Нет	600×500×200
UM-DU-V3	3	Нет	600×500×200
UM-DU-V4	4	Нет	600×500×200
UM-DU-V5	5	Нет	600×500×200
UM-DU-V7,5	7,5	Нет	600×500×200
UM-DU-V11	11	Нет	600×500×200
UM-DU-V15-PPD	15	Есть	600×600×200
UM-DU-V18,5-PPD	18,5	Есть	600×600×200
UM-DU-V22-PPD	22	Есть	600×600×200
UM-DU-V30-PPD	30	Есть	800×600×200
UM-DU-V37-PPD	37	Есть	800×600×200
UM-DU-V45-PPD	45	Есть	800×600×200
UM-DU-V55-PPD	55	Есть	800×600×200
UM-DU-V60-PPD	60	Есть	800×600×200
UM-DU-V75-PPD	75	Есть	800×600×200

РЕГУЛЯТОР ОБОРОТОВ ЧАСТОТНЫЙ GS51

Частотные регуляторы GS51 используются для контроля и защиты электродвигателя вентиляторов и плавного регулирования их производительности.

- Регуляторы снабжены панелью управления с ЖК-дисплеем, устройством защиты двигателя, программируемыми цифровыми входами и выходами (24 B, логика PNP/NPN). программируемым беспотенциальным перекидным контактом (230 В, 2 А);
- Корпус регулятора приспособлен для настенного монтажа;
- Предусмотрено подключение термоконтактов (термисторов) вентилятора и устройства дистанционного управления (тип сигнала – сухой контакт или аналоговый сигнал (0-10 B/O (4) - 20 MA));
- Максимальная температура окружающей среды: +50°С;
- Защита от перенапряжения, перегрузки, обрыва фазы и пониженного напряжения;
- Возможно подключение к системе диспетчеризации BMS по протоколу ModBus (RS485).

Тип регулятора	Питание регулятора	Питание вентилятора	Мощность	Номин. Ток	Степень защиты	Размеры (ШхВхГ)	Масса, кг
GS51-02-0075A4	1 фаза 230 В	3 фазы 230 В	0,75 кВт	4 A	IP20	164x89x125	1,1
GS51-02-0150A7	1 фаза 230 В	3 фазы 230 В	1,5 кВт	7 A	IP20	164x89x125	1,1
GS51-T4-0220A5	3 фазы 380 В	3 фазы 380 В	2,2 кВт	5,1 A	IP20	164x89x125	1,1
GS51-T4-0300A7	3 фазы 380 В	3 фазы 380 В	3 кВт	7,2 A	IP20	164x89x125	1,1
GS51-T4-0400A9	3 фазы 380 В	3 фазы 380 В	4 кВт	9 A	IP20	184x97x145	1,3
GS51-T4-0550A13	3 фазы 380 В	3 фазы 380 В	5,5 кВт	13 A	IP20	184x97x145	1,3
GS51-T4-0750A17	3 фазы 380 В	3 фазы 380 В	7,5 кВт	17 A	IP20	257x146,5x185	3,2
GS51-T4-1100A25	3 фазы 380 В	3 фазы 380 В	11 кВт	25 A	IP20	257x146,5x185	3,3
GS51-T4-1500A32	3 фазы 380 В	3 фазы 380 В	15 кВт	32 A	IP20	257x146,5x185	3,4
GS51-T4-1850A37	3 фазы 380 В	3 фазы 380 В	18,5 кВт	37 A	IP20	320x170x205	5,7
GS51-T4-2200A45	3 фазы 380 В	3 фазы 380 В	22 кВт	45 A	IP20	320x170x205	5,7
GS51-T4-3000A60	3 фазы 380 В	3 фазы 380 В	30 кВт	60 A	IP20	400x200x220	11
GS51-T4-4500A91	3 фазы 380 В	3 фазы 380 В	45 кВт	91 A	IP20	510x260x252	19,5
GS51-T4-5500A112	3 фазы 380 В	3 фазы 380 В	55 кВт	112 A	IP20	510x260x252	19,5

^{*} Частотный преобразователь необходимо устанавливать на минимальном возможном расстоянии от регулируемого двигателя (не более чем в 50 м.)

^{***} Параллельная прокладка коммутационных и силовых кабелей запрещена *** Рекомендуется использовать экранированный кабель

РЕГУЛЯТОР ОБОРОТОВ ЧАСТОТНЫЙ VF-101

Частотные регуляторы VF-101 используются для контроля и защиты электродвигателя вентиляторов дымоудаления противопожарной вентиляции и плавного регулирования их производительности.

- Наличие доп. выходов для подключения заслонок и датчиков: 2 релейных, 2 аналоговых и 2 цифровых;
- Возможность подключения к системе диспетчеризации зданий по одному из нескольких протоколов;
- Возможно подключение к системе диспетчеризации ВМЅ по протоколу ModBus (RS485);
- Возможность установки на расстоянии до 50 метров от электродвигателя;
- Защита от перенапряжения, перегрузки, обрыва фазы и пониженного напряжения;
- Соответствует требованиям ГОСТ 53 325-2012 «Техника пожарная. Технические средства пожарной автоматики. Общие технические требования» и регламента ТР EA3C 043/2017

Наименование	Входное напряжение, В	Выходная мощность, кВт	Номинальный выходной ток, А	Ток перегрузки 120%	Торм. ключ	Масса, кг	ВхШхГ, мм	Степень защиты
VF-101 (11 кВт, 25 A, 380 B)	380	11	25	30	встроенный	3,5	320x116x175	IP20 стандартно/ IP54 по запросу
VF-101 (30 кВт, 60 A, 380 B)	380	30	60	72	встроенный	5,9	383x142x225	IP20 стандартно/ IP54 по запросу
VF-101 (37 кВт, 75 A, 380 B)	380	37	75	90	внешний	10,7	430x172x225	IP20 стандартно/ IP54 по запросу
VF-101 (45 кВт, 90 A, 380 B)	380	45	90	108	внешний	10,7	430x172x225	IP20 стандартно/ IP54 по запросу
VF-101 (55 кВт, 110 A, 380 B)	380	55	110	132	внешний	25	558x240x310	IP20 стандартно/ IP54 по запросу

^{*} Частотный преобразователь необходимо устанавливать на минимальном возможном расстоянии от регулируемого двигателя (не более чем в 50 м.)

^{**} Параллельная прокладка коммутационных и силовых кабелей запрещена *** Рекомендуется использовать экранированный кабель

РЕГУЛЯТОР ЧАСТОТЫ ВРАЩЕНИЯ ВЕНТИЛЯТОРА ARW

Регуляторы оборотов ступенчатые ARW применяются для ступенчатого управления скоростью вращения однофазных электродвигателей.

- Выбор скорости с помощью переключателя;
- Встроенный предохранитель;
- Выключатель on/off с подсветкой;
- Максимальная температура окружающей среды: +40°C.

Тип регулятора	Питание регулятора	Макс. ток	Степень защиты	Размеры (ШхВхГ)	Масса
ARW 3,0/1	1~230 B	3 A	IP54	96х166х91 мм	2,5 кг
ARW 7,0	1~230 B	7 A	IP54	145х210х145 мм	5,5 кг
ARW 10,0	1~230 B	10 A	IP54	147х277х155 мм	8,5 кг

РЕГУЛЯТОР ОБОРОТОВ ЭЛЕКТРОННЫЙ FSC

Регулятор оборотов электронный FSC предназначен для регулирования оборотов однофазных двигателей путём плавного изменения подаваемого напряжения

- Для настенного и скрытого монтажа.
- Напряжение питания: 230 В (АС) / 50 Гц.
- Максимальная температура окружающей среды: +35°C.

Тип регулятора	Питациа полупатора	Макс. ток	Стопош оошити	Предохранитель (А)		Размеры	Bec
	Питание регулятора	Makt. 10k	Степень защиты	Тип	Ток	(ШхВхГ)	Dec
FSC-1,5	1~220 B	1,5 A	IP54 / IP44	F2,5AH (5x20 мм)	2,5 A	82х82х65мм	0,20 кг
FSC-2,5	1~220 B	2,5 A	IP54 / IP44	F3,15AH (5x20 мм)	3,15 A	82х82х65мм	0,24 кг

УСТРОЙСТВО ПЛАВНОГО ПУСКА РРД

Устройство плавного пуска PPD применяется для снижения пиковых нагрузок на электродвигатель и питающую сеть (возникающих при запуске вентиляторов) посредством переключения питания электродвигателя со звезды на треугольник.

- Двигатели подключаемых вентиляторов должны иметь питание 380/660 В (400/690 В);
- Корпус устройства приспособлен для настенного монтажа;
- Допустимая температура окружающего воздуха до +40°С.

Тип устойства	Питание устройства	Мощность вентилятора	Степень защиты	Размеры (Ш×В×Г)
PPD-7.5	380 В / 3+N фаз	до 7,5 кВт	IP55	195×240×90 мм
PPD-11	380 В / 3+N фаз	до 11 кВт	IP55	195×240×90 мм
PPD-15	380 В / 3+N фаз	до 15 кВт	IP55	195×240×90 мм
PPD-18	380 В / 3+N фаз	до 18 кВт	IP55	195×240×90 мм
PPD-22	380 В / 3+N фаз	до 22 кВт	IP55	195×240×90 мм
PPD-30	380 В / 3+N фаз	до 30 кВт	IP55	195×240×90 мм
PPD-37	380 В / 3+N фаз	до 37 кВт	IP55	220×300×120 мм
PPD-45	380 В / 3+N фаз	до 45 кВт	IP55	220×300×120 мм

УСТРОЙСТВО КОНТРОЛЯ РАБОТЫ ЛАМП ДЛЯ UFB

Устройство используется для контроля работы бактерицидных секций UFB.

- Устройство выполнено в корпусе из прозрачного термостойкого пластика. Размеры (Ш×В×Г): 135×160×150 мм. Степень защиты корпуса при закрытой крышке — IP65, при открытой — IP40.
- В состав устройства входит электромеханический счетчик часов, реле контроля минимального тока и лампа-индикатор режимов работы.
- Счетчик часов включается при подаче напряжения на устройство, фиксируя реальное время работы ламп и не имеет возможности сброса.
- Реле минимального тока контролирует ток потребления секции UFB и в случае перегорания одной из лампоблучателей выдает сигнал неисправности.
- Световая индикация работа/авария.

ПРИВОД ВОЗДУШНОЙ ЗАСЛОНКИ VR

Приводы предназначены для управления воздушными заслонками в системах вентиляции и кондиционирования.

- Прочный металлический корпус;
- Зубчатая передача с системой защиты от расцепления и перегрузок;
- Автоматическая остановка механизма при достижении конечного положения;
- Настройка направления вращения привода;
- Встроенный индикатор положения заслонки;
- Температура окружающей среды: от −30°С до +50°С;
- Работа при относительной влажности воздуха: до 95%;
- Соединительный кабель: 0,9 м (0,75 мм²);
- Степень защиты: IP54.

Тип привода	Питание	Возвратная пружина	Сигнал управления	Крутящий момент	Площадь заслонки	Время срабатывания	Сторона квадрат- ного сечения под шток	Диаметр круглого сечения под шток	Масса, кг
VR2RS230-D	230 B	нет	2-х/3-х позиционный	2 Нм	до 0,5 м²	30 c	5×512×12	616	0,5
VR3WS230-D	230 B	есть	2-х позиционный	3 Нм	до 0,6 м²	75 c	7×711×11	1016	1,3
VR4RS24-A	24 B	нет	0-10 B	4 Нм	до 0,8 м²	50 c	8×812×12	616	0,8
VR4RS230-D	230 B	нет	2-х/3-х позиционный	4 Нм	до 0,8 м²	50 c	8×812×12	616	0,8
VR5WS24-A	24 B	есть	0-10 B	5 Нм	до 1 м²	70 c	7×711×11	1016	1,8
VR5WS24-AS	24 B	есть	0-10 B	5 Нм	до 1 м²	70 c	7×711×11	1016	1,8
VR5WS230-D	230 B	есть	2-х позиционный	5 Нм	до 1 м²	50 c	7×711×11	1016	1,8
VR8RS230-D	230 B	нет	2-х/3-х позиционный	8 Нм	до 1,5 м²	55 c	10×1016×16	1020	1,2
VR10WS230-D	230 B	есть	2-х позиционный	10 Нм	до 1,5 м²	100 c	6×615×15	821	2,6
VR15WS230-D	230 B	есть	2-х позиционный	15 Нм	до 3 м²	150 c	6×615×15	821	2,8

СИГНАЛИЗАТОР ЗАГАЗОВАННОСТИ RGICOOL42M

Сигнализатор загазованности RGICO0L42M используется для оповещения о достижении предельных концентраций угарного газа (CO) в воздухе помещения. При достижении установленного значения подаётся дискретный сигнал (on/off) на устройство управления и включается встроенная световая и звуковая сигнализация. Сигнализатор предназначен для настенного монтажа.

Параметр	Значение	
Порог срабатывания	предварительная тревога: $20 \text{мг/м}^3 \pm 5 \text{мг/м}^3$; главная тревога: $100 \text{мг/м}^3 \pm 25 \text{мг/м}^3$	
Сигнализация	работа: зелёный индикатор; предварительная тревога: красный мигающий индикатор; главная тревога: красный индикатор, звуковой сигнал; отказ: жёлтый индикатор	
Питание	230 В -15%+10% переменного тока	
Тип переключателя	2 x SPDT	
Коммутационная способность	2 × 6(2) A, 250 В переменного тока	
Температура окружающей среды	0+40 °C	
Степень защиты	IP40	
Материал и цвет корпуса	ABS V0 огнеупорный, белый (RAL9003)	
Габариты	130×100×62 мм	

TEPMOCTAT ERT

Параметр	Значение
Диапазон настройки точки срабатывания	от 0°С до 40°С
Зона нечувствительности	4+/-2K
Тип переключателя	Микропереключатель с однополюсным беспотенциальным перекидным контактом
Коммутационная способность	макс: 16 (5) А; 24250 В переменного тока
(контактная нагрузка)	мин: 150 мА; 24 В переменного тока
Материал корпуса	полиамид
Температура окружающей среды	от 0°С до +80°С
Степень защиты	IP54
Размеры (Ш×В×Г)	61×105×60 мм

Термостат ERT применяется для контроля температуры воздуха в помещениях различного назначения. При достижении установленного значения подаётся дискретный сигнал (on/off) на устройство управления. Органы настройки расположены снаружи. Термостат предназначен для настенного монтажа.

ВЫКЛЮЧАТЕЛЬ КОНЦЕВОЙ КВ-8108

Параметр	Значение	
Рабочая температура окружающей среды	от -20°С до +70°С	
Коммутационная способность	до 3 А; 125250 В переменного тока	
(контактная нагрузка)	до 4 А; 1030 В постоянного тока	
Степень защиты	IP65	
Усилие прямого срабатывания	7,5 H	
Тип переключателя	Микропереключатель с однополюсным беспотенциальным перекидным контактом	
Тип элемента управления	Регулируемый поворотный роликовый рычаг	
Размеры (ШхВхГ)	29х46х98 мм	

Концевой выключатель применяется для слежения за состоянием ворот или других подвижных устройств и выдачи дискретного сигнала (on/off) на устройство управления воздушно-тепловых завес TVP.

ГИГРОСТАТ NT74-F

Параметр	Значение
Диапазон настройки точки срабатывания	от 30% до 90%
Зона нечувствительности	5+/ - 1%
Тип переключателя	Микропереключатель с однополюсным беспотенциальным перекидным контактом
Коммутационная способность	макс: 5 (3) А; 250 В переменного тока
(контактная нагрузка)	мин: 100 мА; 24 В переменного тока
Материал корпуса	поликарбонад
Температура окружающей среды	от 0°С до +40°С
Степень защиты	IP20
Размеры (Ш×В×Г)	76×76×34 мм

Гигростат NT74-F применяется для контроля уровня относительной влажности воздуха в помещениях различного назначения. При достижении установленного значения подаётся дискретный сигнал (on/off) на устройство управления. Органы настройки расположены внутри. Гигростат предназначен для настенного монтажа.

ДАТЧИК ПЕРЕПАДА ДАВЛЕНИЯ DPD

Параметр	Значение
	DPD-2: 20-200 Па (10 Па+/ — 15%)
Диапазон настройки точки срабатывания (зона нечувствительности)	DPD-5: 50-500 Πa (20 Πa+/ – 15%)
(зона нечувствительности)	DPD-10: 100-1000 Πa (40 Πa+/ – 15%)
Tura managarana	Микропереключатель с однополюсным
Тип переключателя	беспотенциальным перекидным контактом
Коммутационная способность	5(0,8) А; 250 В переменного тока
(контактная нагрузка)	4(0,7) А; 30 В постоянного тока
Maranuaruunaruannua	крышка: поликарбонат, прозрачный
Материал и цвет корпуса	основание: поликарбонат, светло-серый
Температура окружающей среды	от -30°С до +85°С
Степень защиты	IP54
Размеры (Ш×В×Г)	98×98×58 мм

Датчик перепада давления DPD применяется для контроля работоспособности различных элементов вентиляционных систем (фильтров, вентиляторов, теплоутилизаторов) посредством измерения перепада давления на контролируемом элементе. При достижении установленного значения подаётся дискретный сигнал (on/off) на устройство управления.

TEPMOCTAT STW KP-61

Параметр	Значение
Корпус	пластиковый
Чувствительный элемент	медный, активный по всей длине
	1 м
D	3 м
Длина капилляра	6 м
	12 м
Коммутируемый ток	переменный ток 16(4) A, 250 B
Контакт	однополюсной перекидной контакт SPDT
Рабочий диапазон	−18°C+15°C
Гемпература окружающей среды	от –40°С до +65°С
Степень защиты	IP 44 (30 без верхней крышки)

Термостат STW KP-61 предназначен для контроля температуры теплообменников с целью защиты их от замерзания. Для защиты водяного нагревателя от замерзания капилляр крепится с помощью монтажных скоб на поверхность теплообменника со стороны выхода воздуха. Для защиты фреонового испарителя капиллярную трубку наматывают на патрубок отвода хладагента.

ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА STN

Параметр	Значение
Диапазон измерения	от –50°С до 90°С
Чувствительный элемент	STN: Ni1000 TK5000 STN-3: NTC 10k0m
Материал корпуса	Усиленный полиамид, с защелкивающейся крышкой
Способ крепления	Винтами на плоскую поверхность
Тип подключения	Клеммное, 2-х проводное (0,14-1,5 мм²)
Сопротивление изоляции	≥100 МОм, при 20°С (500 В пост.тока)
Измеряемый ток	прибл. 1 мА
Степень защиты	IP65
Размеры (Ш×В×Г)	72×40×64 мм

Датчик температуры воздуха STN применяется для измерения температуры окружающей среды. Данные о температуре подаются в виде аналогового (непрерывного) сигнала на устройство управления. Датчик предназначен для установки на стене.

ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА STK

Параметр	Значение
Диапазон измерения	от –30°С до 150°С
Чувствительный элемент	STK-1(M): Ni1000 TK5000 STK-2(M): NTC 12k0m STK-3(M): NTC 10k0m
Погружная гильза	STK(M): гибкий стержень, длина 100 мм, d6 мм STK: нержавеющая сталь, длина 200 мм, d6 мм
Способ крепления	монтажный фланец с фиксирующим винтом
Материал корпуса	Усиленный полиамид, с защелкивающейся крышкой
Тип подключения	клеммное, 2-х проводное (0,14-1,5 мм²)
Сопротивление изоляции	≥100 МОм, при 20°С (500 В пост.тока)
Измеряемый ток	прибл. 1 мА
Температура окружающей среды	от -20°С до +100°С
Степень защиты	IP65
Размеры корпуса (Ш×В×Г)	72×40×64 мм

Датчик температуры воздуха канальный STK применяется для измерения температуры воздуха в вентиляционных каналах. Данные о температуре воздуха подаются в виде аналогового (непрерывного) сигнала на устройство управления. Датчик предназначен для установки непосредственно в воздуховод.

ДАТЧИК ТЕМПЕРАТУРЫ ВОДЫ VSP

Параметр	Значение
Диапазон измерения	от –50°С до 180°С
Чувствительный элемент	VSP: Ni1000 TK5000 VSP-3: NTC 10k0m
Погружная гильза	нержавеющая сталь, длина 100мм, d8 мм
Способ крепления	резьба G1/2" (глубина 14мм)
Тип кабеля	силикон, 2×0,25мм² , длина 1,5м, с наконечниками
Сопротивление изоляции	≥100 МОм, при 20°С (500 В пост.тока)
Измеряемый ток	прибл. 1 мА
Степень защиты	IP65

Датчик температуры воды VSP применяется для защиты водяных воздухонагревателей от обмерзания посредством измерения температуры воды на выходе из нагревателя. Данные о температуре воды подаются в виде аналогового (непрерывного) сигнала на устройство управления. Датчик предназначен для установки непосредственно в коллектор теплообменника.

НАКЛАДНОЙ ДАТЧИК ТЕМПЕРАТУРЫ ВОДЫ VSN

Параметр	Значение
Диапазон измерения	от -50°С до 180°С
Чувствительный элемент	VSN: Ni1000 TK5000 VSN-3: NTC 10k0m
Материал корпуса	Усиленный полиамид, с защелкивающейся крышкой
Способ крепления	винтовой хомут d=13-92 мм (1/4-3"), длина 300 мм
Тип подключения	клеммное, 2-х проводное (0,14-1,5 мм2)
Сопротивление изоляции	≥100 МОм, при 20°С (500 В пост. тока)
Измеряемый ток	прибл. 1 мА
Степень защиты	IP65
Размеры (Ш×В×Г)	72×40×64 мм

Накладной датчик температуры воды VSN применяется для защиты водяных воздухонагревателей от обмерзания посредством измерения температуры воды на выходе из нагревателя. Данные о температуре воды подаются в виде аналогового (непрерывного) сигнала на устройство управления. Датчик предназначен для установки на поверхность трубопровода. Крепится при помощи стального хомута.

ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА STP

Параметр	Значение
Диапазон измерения	от –30°С до 90°С
Чувствительный элемент	STP: Ni1000 TK5000 STP-3: NTC 10k0m
Материал корпуса	ABS пластик
Способ крепления	винтами на плоскую поверхность
Тип подключения	клеммное, 2-х проводное (0,14-1,5 мм²)
Питание	макс. 24 В постоянного тока
Измеряемый ток	прибл. 1 мА
Степень защиты	IP30
Размеры (Ш×В×Г)	85×91×27 мм

Датчик температуры воздуха STP применяется для измерения температуры воздуха в помещениях различного назначения. Данные о температуре подаются в виде аналогового (непрерывного) сигнала на устройство управления. Датчик предназначен для установки на стене.

КЛАПАН ТРЕХХОДОВОЙ ТВG 15-0,4

Предназначены для качественного или количественного регулирования производительности водяных воздухонагревателей (водяных воздухоохладителей) в системах вентиляции и кондиционирования посредством изменения температуры (расхода) подаваемого теплоносителя.

- Корпус клапана выполнен из бронзы;
- Присоединение при помощи внутренней резьбы;
- Теплоноситель: вода, вода с антифризом или антифриз на основе пропилен- или этиленгликоля (до 45%);
- Температура теплоносителя: от –10°С до +110°С;
- Максимальное рабочее давление: 1 МПа.

Tue	DN	Kvs	ΔР макс.		Размеры (ШхВхГ)	Magaz	Сопродпирод
Іип	DIN	NVS	смешение	разделение	газмеры (шхохі)	Macca	Сервопривод
TBG 15-0,4	15 мм	0,40	600 кПа	200 кПа	60х84х29 мм	0,28 кг	ELVA 05/24.M (0-10B)

КЛАПАН ТРЕХХОДОВОЙ VB39M

Клапаны трехходовые VB39M предназначены для качественного или количественного регулирования производительности водяных воздухонагревателей и воздухоохладителей в системах вентиляции и кондиционирования посредством изменения температуры (расхода) подаваемого теплоносителя.

- Регулирование поворотом штока;
- Монтаж в любом положении;
- Резьбовое соединение (внутренняя резьба);
- Материал корпуса и регулирующего затвора: латунь.
- Тепло/хладоноситель: вода или антифриз на основе пропиленили этиленгликоля (до 45%);
- Температура рабочей среды: от —10 до +110°C.
- Максимально допустимое рабочее давление: 1 МПа.
- Рабочий угол поворота: 90°.

Типоразмер	Kvs	Тип привода, 010V	Резьбовое соединение	Масса, кг
VB39M15A Kvs 1.0	1,0	ZBA	1/2"	0,55
VB39M15B Kvs 1.63	1,63	ZBA	1/2"	0,55
VB39M15C Kvs 2.5	2,5	ZBA	1/2"	0,55
VB39M20A Kvs 4.0	4,0	ZBA	3/4"	0,58
VB39M20B Kvs 6.3	6,3	ZBA	3/4"	0,58
VB39M25A Kvs 10	10,0	ZBA	1"	0,92
VB39M32A Kvs 16	16,0	ZBA	11/4"	1,2

КЛАПАН ТРЕХХОДОВОЙ HFE3

Клапаны трехходовые HFE3 предназначены для качественного или количественного регулирования производительности водяных воздухонагревателей и воздухоохладителей в системах вентиляции и кондиционирования посредством изменения температуры (расхода) подаваемого теплоносителя.

- Регулирование поворотом штока.
- Монтаж в любом положении.
- Фланцевое соединение.
- Материал корпуса: чугун
- Тепло/хладоноситель: вода или антифриз на основе пропиленили этиленгликоля (до 45%).
- Материал регулирующего затвора: латунь.
- Температура рабочей среды: от —10 до +110°C.
- Максимально допустимое рабочее давление: 0,6 МПа.
- Рабочий угол поворота: 90°.

Типоразмер клапана	Kvs	Тип привода, 010V	Фланцевое соединение, мм	Масса, кг
HFE3 DN50 Kvs60	60,0	AMB 162	DN 50	9,4
HFE3 DN65 Kvs90	90,0	AMB 182	DN 65	11,5
HFE3 DN80 Kvs150	150,0	AMB 182	DN 80	17

ПРИВОД КЛАПАНОВ ZBA

Сервоприводы ZBA предназначены для управления трехходовым клапаном VB39M и HFE3

- Режим ручного управления клапаном (активируется с помощью встроенного переключателя);
- Индикатор текущего положения клапана;
- Защита привода при блокировке клапана.

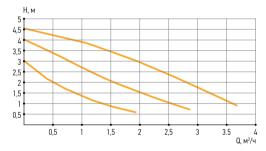
V	Тип привода			
Характеристики	ZBA230A02	ZBA24A02		
Напряжение питания	230 V AC	24 V AC		
Частота	50/60 Гц	50/60 Гц		
Управляющий сигнал	0-10 B	0-10 B		
Мощность	5 Вт в режиме работы, 1	Вт в режиме ожидания		
Время открытия/закрытия	90 c	90 c		
Возвратная пружина	нет	нет		
Создаваемое усилие	10 Нм			
Рабочая температура	0+50°C	0+50°C		

СЕРВОПРИВОД ELVA 05/24.М

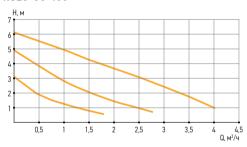
Сервопривод ELVA 05/24.М предназначен для управления трехходовыми клапанами типа TGB 15-0,4

Параметр	Значение
Питание	24 В переменного/постоянного тока
Управляющий сигнал	0-10 B
Время срабатывания	60/120 сек
Создаваемое усилие	6 Нм
Степень защиты	IP42
Рабочая температура	от -5°С до +50°С
Размеры (ШхВхГ)	80х94х84 мм
Масса	0,65 кг

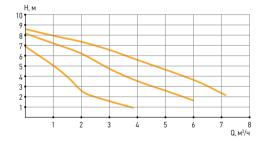
ЦИРКУЛЯЦИОННЫЙ HACOC RS, A

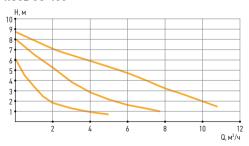


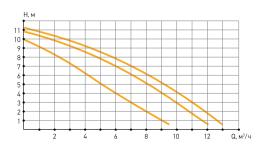
Циркуляционные насосы RS, А применяются в узлах обвязки воздухонагревателей для создания циркуляции теплоносителя в контуре нагреватель-трехходовой вентиль-байпас-нагреватель.


- Имеют моноблочное исполнение и двухполюсный асинхронный двигатель с мокрым ротором;
- Однофазные насосы имеют три скорости вращения, напряжение 1~230 В, снабжены встроенным тепловым выключателем и не требуют дополнительной защиты от перегрузки;
- Трехфазные насосы имеют три скорости вращения, напряжении 3~400 В, подключение к сети электропитания через внешний пускатель;
- Степень защиты: IP 44. Класс изоляции: F для насосов с резьбовым подключением;
- В качестве теплоносителя может использоваться вода или незамерзающая жидкость на основе водного раствора пропилен- или этиленгликоля (макс. концентрация 40%).
 Максимально допустимое рабочее давление: 1 МПа.

Тип насоса	Условный проход	Питание, В	Макс. мощность, Вт	МАХ расход, м³/ч	МАХ напор, м	Монтажная длина, мм	Масса, кг
RS25/4G-180	25	1~230	72	2,9	4,50	180	2,4
RS25/6G-180	25	1~230	93	3,2	6,00	180	3,1
RS25/8G-180	25	1~230	182	6,9	8,00	180	3,8
RS32/8G-180	32	1~230	270	9,6	8,00	180	5,0
A 110/180 XM	32	1~230	410	13	11,30	180	7,5


RS25-4G-180

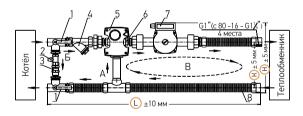

RS25-6G-180


RS25-8G-180

RS32 8G-180

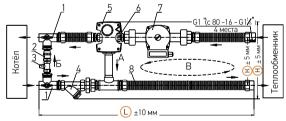
A 110180 XM

СМЕСИТЕЛЬНЫЙ УЗЕЛ ONX

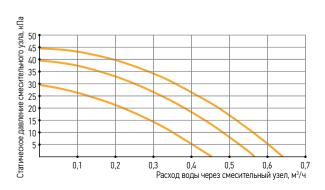

Смесительные узлы ONX применяются для регулирования производительности водяных воздухонагревателей посредством изменения температуры подаваемого теплоносителя. Изготавливаются прямой или обратной конфигурации. Прямая конфигурация применяется при температуре входящего теплоносителя до +100°C, обратная — при температуре входящего теплоносителя до +170°C.

- В состав смесительного узла ONX входят следующие элементы:
 - Запорные шаровые вентили на входе и выходе теплоносителя;
 - Сетчатый фильтр на входе теплоносителя;
 - Байпас с обратным клапаном и регулировочным вентилем;
 - Циркуляционный насос RS или A;
 - Трехходовой клапан VB39M с сервоприводом ZBA;
 - Гибкие присоединительные трубки из нержавеющей стали.
- Тип теплоносителя: вода, антифриз;
- Максимальное рабочее давление:
 1 МПа.:
 - Минимальное рабочее давление: 20 кПа.

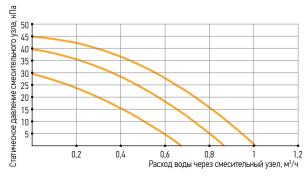
ТИПОРАЗМЕРЫ


T.,=====		T- "	Сервопривод	Размеры, мм			M	Присоолицоция
Типоразмер	Циркуляционный насос	Трёхходовой клапан		L	Н	К	Масса, кг	Присоединения
ONX 40-1,0	RS25/4G-180	VB39M15A Kvs 1.0	ZBA24A02	870	300	210	8,7	G1"
ONX 40-1,6	RS25/4G-180	VB39M15B Kvs 1.63	ZBA24A02	870	300	210	8,7	G1"
ONX 40-2,5	RS25/4G-180	VB39M15C Kvs 2.5	ZBA24A02	870	300	210	8,7	G1"
ONX 40-4,0	RS25/4G-180	VB39M20A Kvs 4.0	ZBA24A02	870	300	210	8,7	G1"
ONX 60-4,0	RS25/6G-180	VB39M20A Kvs 4.0	ZBA24A02	870	300	210	8,8	G1"
ONX 60-6,3	RS25/6G-180	VB39M20B Kvs 6.3	ZBA24A02	870	300	210	8,8	G1"
ONX 80-6,3	RS32/8G-180	VB39M20B Kvs 6.3	ZBA24A02	870	300	210	10,1	G1"
ONX 80-10,0	RS32/8G-180	VB39M25A Kvs 10	ZBA24A02	870	300	210	10,1	G1"
ONX 80-16,0	RS32/8G-180	VB39M32A Kvs 16	ZBA24A02	980	380	270	14,2	G1 1/4"
ONX 110-16,0	A 110/180XM	VB39M32A Kvs 16	ZBA24A02	980	380	270	15,5	G1 1/4"

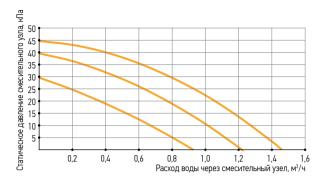
CXEMA ONX ПРЯМОЙ КОНФИГУРАЦИИ

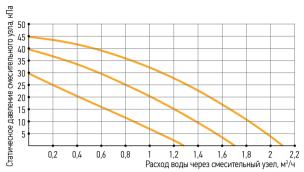

- 1. Запорные шаровые краны;
- 2. Регулировочный вентиль байпаса;
- 3. Обратный клапан байпаса;
- 4. Фильтр с отстойником;

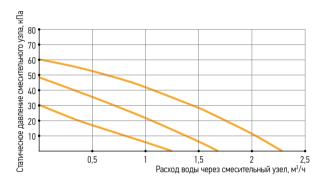
CXEMA ONX ОБРАТНОЙ КОНФИГУРАЦИИ

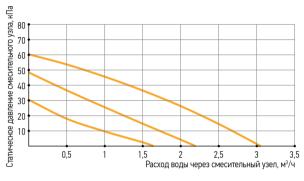


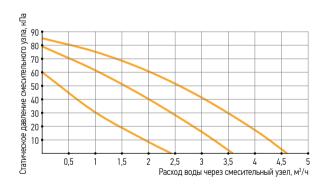
- 5. Сервопривод трёхходового вентиля;
- 6. Трёхходовой вентиль;
- 7. Циркуляционный насос;
- 8. Гибкие патрубки (нерж. сталь).

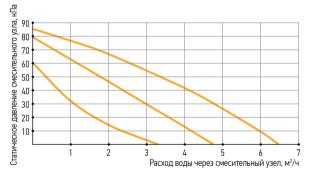

ONX 40-1,0

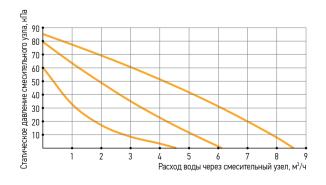

ONX 40-1,6

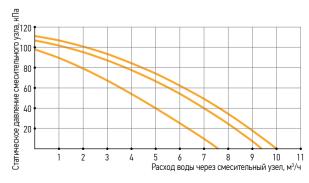

ONX 40-2,5


ONX 40-4,0


ONX 60-4,0


ONX 60-6,3


ONX 80-6,3


ONX 80-10,0

ONX 80-16,0

ONX 110-16,0

ПУЛЬТ RTF

Параметр	Значение
Диапазон измерения	от –30°С до 90°С
Чувствительный элемент (температура)	Ni1000 TK5000
Материал и цвет корпуса	акрилонитрил-бутадиенстирол (ABS), белый
Способ крепления	винтами на плоскую поверхность
Тип подключения	клеммное, 2-х проводное (0,14-1,5 мм²)
Питание	макс. 24 В постоянного тока
Измеряемый ток	прибл. 1 мА
Степень защиты	IP30
Размеры (Ш×В×Г)	80×85×35 мм

- На пульте расположены следующие элементы управления: переключатель для подачи сигнала включения/выключения установки (сухой контакт), 2 светодиода (зеленый и красный) для индикации работы/аварии установки);
- В пульте имеется встроенный датчик для измерения температуры в помещении. Данные о температуре подаются в виде аналогового (непрерывного) сигнала на устройство управления;
- Пульт предназначен для настенного монтажа.

УСТРОЙСТВО ДИСТАНЦИОННОГО УПРАВЛЕНИЯ TH-TUNE

Устройство дистанционного управления используется в качестве пользовательской панели управления блоками UM-CA.

- Диапазоны измерений: Температура 0 ± 40 °C ± 1 °C; Относительная влажность 20-80%: $\pm 5\%$;
- Последовательное подключение RJ485;
- Питание от контроллера или от внешнего источника 24В;
- Настенный монтаж, расстояние не более 500 м от блока управления;
- Класс защиты IP20;
- Часы реального времени и недельный таймер;
- Размеры (ШхВхГ) 143х86х36 мм.

ВЫНОСНАЯ ПАНЕЛЬ УПРАВЛЕНИЯ ДЛЯ УСТАНОВОК AVS

Панель выполнена на основании пользовательского терминала Carel pGDx и используется в качестве пульта дистанционного управления для мини приточно-вытяжных установкок AVS.

- Цветной сенсорный дисплей с диагональю 4,3 дюйма, разрешение 480х272 точки;
- Диапазоны измерений: Температура 0 +50°C ± 1°C;
 Относительная влажность 20–80%: ±5%;
- Встроенный звуковой сигнал для уведомления пользователя о событиях, требующих внимания;
- Светодиодная полоса для отображения общего состояния;
- Разъем USB на передней для обновления прошивки или иных операций;
- Подключение к контроллеру через разъём с винтовыми зажимами по протоколу ModRus:
- Размеры (ШхВхГ) 152х88х32 мм;

Карта реализованных объектов

Технические паспорта

Инструкции по монтажу

Сертификаты

Модели Revit

Программа побора оборудования

MOCKBA

Симферопольский бульвар, 3, оф. 409 8 (495) 150-52-55 info@vertro.ru

САНКТ-ПЕТЕРБУРГ

ул. Оптиков, 4, корп. 2, лит. А (БЦ Лахта), оф. 308 8 (812) 317-71-98 infospb@vertro.ru

КРАСНОДАР

ул. Красноармейская, 100, оф. 106-108 8 (861) 205-15-97 infokrd@vertro.ru

РОСТОВ-НА-ДОНУ

пр-т Нагибина, 40, оф. 306 8 (863) 322-11-98 informd⊘vertro ru

нижний новгород

ул. Ошарская, 77а (БЦ Лондон), оф. 805 8 (831) 420-61-98 infonn@vertro.ru

КАЗАНЬ

ул. Николая Столбова, 2, оф. 405 8 (843) 212-11-97 infokzn@vertro.ru

КИРОВ

8 (922) 965-93-40 krv1@vertro.ru

УФА

ул. 50 лет СССР, 39/2 оф. 5 8 (347) 201-01-27 ufa1@vertro.ru

ЕКАТЕРИНБУРГ

ул. Маршала Жукова, 5, оф. 318/1 8 (343) 243-55-23 infoekb@vertro.ru

ТЮМЕНЬ

ул. Одесская, 9, оф. 504 8 (345) 239-43-39 infotmn@vertro.ru

НОВОСИБИРСК

ул. Спартака, 12/1 оф. 1111 8 (383) 247-88-96 infonsk@vertro.ru

КРАСНОЯРСК

ул. Брянская, 142 (БП Территория), оф. 423 8 (391) 986-60-98 infokrsk@vertro.ru

ИРКУТСК

8 (395) 248-44-53 irk1@vertro.ru

ХАБАРОВСК

8 (421) 290-32-91 hbr1@vertro.ru

ACTAHA

TOO «ВЕРТРО АСТАНА» г. Астана, ул. Бейбитшилик, 25, оф. 421/1, + 7 7172 64 36 88 infokz@vertro.ru

минск

000 «Вентгарант» г. Минск, ул. Домбровская, 9, офис пом. 8, офис 6.2.3.2 +375 29 130 79 30 info@ventgarant.by

8-800-707-52-56

звонок по России бесплатный

ЦЕНТРАЛЬНЫЙ ОФИС

000 «ВЕРТРО», 117556, Москва, Симферопольский 6-р, 3, оф. 409 8 (495) 150-52-55 info@vertro.ru

info@vertro.ru www.vertro.ru

производство, склад

Московская область, Ленинский район, п. Горки Ленинские, промзона «Технопарк», Инновационный проезд, д.8 8 (909) 946-68-67

